KU LEUVEN kulak

2D Modeling of Elastic Wave Propagation in Solids Containing Closed Cracks with Friction

S. Delrue¹, V. Aleshin², O. Bou Matar², K. Van Den Abeele¹

 ¹ Wave Propagation & Signal Processing Research Group, KU Leuven Kulak, Kortrijk, Belgium
 ² Institute of Electronics, Microelectronics & Nanotechnologies, Lille, France

October 13, 2016

Ultrasonic Non-Destructive Testing (NDT)

A family of techniques based on the **propagation of ultrasonic elastic waves** in order to test materials or objects for the **presence of defects**, without destroying the material under study.

Conventional techniques mostly rely on reflection, transmission or scattering of ultrasonic waves at defects.

Contact-type defects

- Solid-to-solid interfaces with imperfect adhesion
- Defects can be either opened or closed

Nonlinear ultrasonic techniques investigating nonlinear features induced by clapping and frictional behavior of contact-like defects:

- Harmonic generation
- Frequency modulation
- Distorted scaling with amplitude

Modeling of contact-type defects

Crucial to push nonlinear ultrasonic NDT the next step forward!!!

Realistic and effective numerical modeling allows:

- 1. Comparison between numerical and experimental results for full defect characterization and localization, lifetime-predictions, etc.
- 2. Further investigation of microscale contacts to predict and explain the presence of macroscopic nonlinear events

Previous modeling in COMSOL®

S. Delrue & K. Van Den Abeele, **Three-dimensional finite element simulation of closed delaminations in composite materials**, Ultrasonics 52 (2012) 315-324.

Clapping model (using virtual spring and **Wong realistic**) **from def**, eicts with gsmooth surfaces hness of internal crack faces

- Friction between crack faces
- Memory effects & Hysteresis

kulak

KU LEUVEN

Theoretical & Numerical Model

Illustrative Example

Conclusion & Future Work

Modeling of contacts with friction

Friction modelling in COMSOL [®]						
Method	Pro's	Con's				
Contact pairs with friction	 Already included in COMSOL[®] Strictly valid only for stationary problems 	 Convergence problems for transient models 				
Tangential virtual spring and damper forces	• Similar implementation as the earlier developed clapping model	 Realistic frictional behavior (e.g. Coulomb friction) can only be approximated 				
Method of Memory Diagrams (MMD)	 Extended model taking into account roughness of crack faces and associated effects of memory and hysteresis 	 Too complex to be implemented directly into Comsol, but possible using Matlab interface 				

V. Aleshin, O. Bou Matar & K. Van Den Abeele, **Method of memory diagrams for mechanical frictional contacts subject to arbitrary 2D loading**, Int. J. Solids. Struct. 60-61 (2015) 84-95

6

The concept

Theory

Real crack in a sample

Approximation by a number of mesoscopic cells

In each cell, MMD provides link between:

- Forces per unit area (normal N and tangential T)
- Displacements
 (normal a and tangential b)

Implementation

Normal and tangential reaction curves

Normal reaction curve

Quadratic force-displacement relation: $N(a) = C^2 a^2, \quad a \ge 0$ with $C = 6 \times 10^{10} P a^{-1/2} m^{-1}$

(Yuan et al., Nondestructive Testing and Evaluation 30, 2015)

Tangential reaction curve: Partial slip

MMD for arbitrary 2D loading:

$$b = \theta \mu \int_{0}^{a} D(\eta) d\eta$$
$$T = \mu \int_{0}^{a} D(\eta) \frac{dN}{da} \Big|_{a=\eta} d\eta$$

with μ the friction coefficient, θ a material constant depending on Poisson's ratio ν , and $D(\eta)$ the memory diagram.

(Aleshin et al., Int. J. Solids & Structures 60-61, 2015)

KU LEUVEN

Steven DELRUE - COMSOL Conference Munich

kulak

The full constitutive crack model

Note:
$$b = b_0 + \Delta b$$

Total sliding

Algorithm			
Defect state	lf	Then	Memory diagram
Contact loss	<i>a</i> < 0	$\Delta b := 0 \& b_0 := b$ $T = N = 0$	$D(\eta) = \eta$
Total sliding	$a \ge 0$ $ \Delta b \ge \theta \mu a$	$\Delta b := \pm \theta \mu a \& b_0 := b - \Delta b$ $T = \pm \mu N$	$\frac{ D(\eta) }{a}\eta$
Partial slip	$a \ge 0$ $ \Delta b < \theta \mu a$	$b_0 := b_0 \& \Delta b := b - b_0$ $T := MMD(\Delta b)$	$1 \qquad D(\eta) \qquad a \qquad \eta$

KU LEUVEN

Steven DELRUE - COMSOL Conference Munich

kulak

Theoretical example

10

Comsol modeling approach

5.2 MU			MATLAB	
Structural mechanics module			Crack model Uses contact mechanical models for normal and MMD for tangential interactions, system is driven by displacements	
Uses stresses and forces to calculate strains and displacements in a solid sample with crack inserted using thin elastic layer.				
Output	Δu_n and Δu_t	=	Input	a and b
Input	σ_n and σ_t	~~~~	Output	N and T
Thin elastic layer accepts			Crack states: contact loss,	

partial slip or total sliding

external MATLAB[®] functions

kulak

KU LEUVEN

Theoretical & Numerical Mode

Illustrative Example

Conclusion & Future Work

Model geometry

Shear wave excitation: 5 cycle sine wave burst at 100 kHz

> Crack of finite extent (modelled as thin elastic layer)

50 mm

Finer mesh at crack interface is required to obtain a stable and accurate solution

kulak **KU LEUVEN**

Illustrative Example

Low amplitude excitation ($A_1 = 10$ nm)

Contact \Rightarrow Normal interaction + Tangential interaction

Steven DELRUE - COMSOL Conference Munich

kulak

KU LEUVEN

High amplitude excitation ($A_2 = 1 \ \mu m$)

Contact \Rightarrow Normal interaction + Tangential interaction

Steven DELRUE - COMSOL Conference Munich

kulak

KU LEUVEN

Normal & tangential stress-displacement relations

Crack as a nonlinear source

Theoretical & Numerical Mode

Illustrative Example

Conclusion & Future Work

Conclusion

A model for elastic wave propagation in solids with cracks was developed in COMSOL®:

- The wave model was implemented in the Structural Mechanics Module
- The crack model was implemented in MATLAB®
- Both models were connected using the LiveLink[™] for MATLAB[®]

The crack model is very realistic, since:

- It takes into account clapping, friction, roughness and hysteresis
- It allows the modeling of three defect states: contact loss, partial slip and full sliding

We have a numerical laboratory for elastic wave problems in materials with cracks!!!

Future Work

Numerical modeling in which various **nonlinear mechanisms** (e.g. clapping, friction) are **switched on/off** \rightarrow Full physical understanding of **nonlinear phenomena** associated with wave-defect interaction

Accurate modeling of novel and promising nonlinear ultrasonic techniques → Support the further development and optimization of nonlinear NDT applications

Extend the constitutive crack model to the 3D case

Thank you for your attention!

Contact: Steven.Delrue@kuleuven.be

