

Determination of Load Dependent Thermal Conductivity of Porous Adsorbents

O. Kraft¹, J. Gaiser¹, M. Stripf¹, U.Hesse²

¹University of Applied Sciences Karlsruhe

²TU Dresden

GEFÖRDERT VOM

Principle of Transient Hot Bridge Technique

Hochschule Karlsruhe Technik und Wirtschaft UNIVERSITY OF APPLIED SCIENCES

> Institut für Kälte-, Klimaund Umwelttechnik

- Structured nickel film between two polyimid sheets
- Sensor clamped between two equivalent specimen

Analytical Evaluation

Hochschule Karlsruhe Technik und Wirtschaft UNIVERSITY OF APPLIED SCIENCES

Assumptions:

- Thickness of the sensor is negligible
- Sensor hot strips correspond to infinitly long flat heat sources
- Infinitly large samples with homogeonous material properties

3D-COMSOL-Model

Geometry of sensor and specimen

- Partial Differential Equation for
 - Adsorption Process

Physics

<u>Sensor</u>

Heat Transfer in Solids	$\frac{\partial \mathbf{T}}{\partial \mathbf{t}} = \frac{1}{\rho \mathbf{c}_{\mathrm{p}}} \cdot \left(\nabla (\mathbf{k} \nabla \mathbf{T}) \right)$
Constant Current	$\nabla \left(-\sigma \nabla V + \frac{I_{B}}{d_{HS} \cdot b_{HS}} \right) = 0$
<u>Specimen</u>	
Transport of Dissoluted Species in Porous Media	$\frac{\partial c}{\partial t} = \nabla (D\nabla c) - \frac{\rho_{Adb,dry}}{\epsilon \cdot M} \frac{\partial X_{ges}}{\partial t}$
Partial Differential Equation (Adsorption, multistage)	$\frac{\partial X_{ges}}{\partial t} = \sum_{i=0}^{n} (\xi_i \cdot ksAp_i \cdot (X_{GG} - X_i))$

Physics

Heat Transfer
Porous Media
$$\frac{\partial T}{\partial t} = \frac{1}{(\rho c_p)_{eff}} \cdot \left(\nabla (k_{eff} \nabla T) + (\rho_v c_{p,v} \mathbf{u}) \nabla T + \frac{h_{ad}}{c_{p,Adb}(X_{ges}, T)} \frac{\partial X_{ges}}{\partial t} \right)$$

 $\mathbf{k}_{eff} = \epsilon \cdot \mathbf{k}_{Adb} (X_{ges}, T) + (1 - \epsilon) \cdot \mathbf{k}_v (T)$
 $\mathbf{k}_{Adb} = \mathbf{k}_{Adb,dry} + \mathbf{f}(X_{ges}, \mathbf{k}_{Fluid})$

3D-COMSOL-Model

3D-COMSOL-Model

IKKU Institut für Kälte-, Klimaund Umwelttechnik

Use of Application Builder

- Automated evaluation of the load-dependent thermal conductivity .
- Implementation of an optimization algorithm .

Results

- No influence of the adsorption kinetics on the evaluation results
- COMSOL evaluation possible with low currents

Outlook

- Determination of load dependent specific heat capacity
 separation of solid and adsorbate heat capacity
- Determination heat capacity and thermal conductivity of specimen with
 - → optimized heat transfer with high conductive additives

Backup

Principle of adsorption heat pump

Institut für Kälte-, Klimaund Umwelttechnik

Principle of adsorption heat pump

