

COMSOL

CONFERENCE

2014 BANGALORE

Declared as Deemed to be University under Section 3 of UGC Act 1956

Comparative Study and 3D Modelling of Breast Cancer Using NIR-fDOT in Comsol

L SOORYA PETER IVEN JOSE CHRIST UNIVERSITY FACULTY OF ENGINEERING

Introduction:

- Cancer is one of the most dreaded diseases of the modern world.
- Breast cancer is the second leading cause (after lung cancer) of morbidity and mortality in women.
- The International Agency for Research on Cancer (IARC), the specialized cancer agency of the WHO, releases data on cancer incidence, mortality, and prevalence worldwide.
- The statistics point out a sharp increase in the incidence of breast cancer
- In 2012, 1.7 million women were diagnosed with breast cancer

- 6.3 million women had been diagnosed with breast cancer in the previous five years(from 2012).
- Since the 2008 estimates, breast cancer incidence has increased by more than 20%, while mortality has increased by 14%.
- It is the most frequently diagnosed cancer among women in 140 of 184 countries worldwide.
- Diagnosis of small pre- malignant lesions and early stage primary tumors, is crucial for the success of cancer therapy and can hence increase survival rates.
- optical imaging technique, can detect lesions as small as 200 microns.

Importance of determination of estrogen receptor status in diagnosis of cancer

- Prominent types of breast cancer Ductal carcinoma in situ, Invasive (or infiltrating) ductal carcinoma, Invasive (or infiltrating) lobular carcinoma.
- Estrogen induced proliferation of mutant cells is one of the major risk determining factor in the development of breast cancer.
- Hence determination of the Estrogen Receptor[ER] status is of paramount importance if cancer pathogenesis is to be detected and rectified at an early stage.
- In fDOT we use an exogenous target (estrogen) specific dye.

Types of imaging techniques :-

- Digital Mammography
- CT-Computed Tomography.
- X-Ray.
- MRI Magnetic Resonance Imaging.
- Ultrasound.
- DOT-Diffuse optical tomography.

WHY DIFFUSE OPTICAL TOMOGRAPFY(DOT)..?

- Low power hence non-ionizing
- non-invasive
- good penetration
- spectral contrast

inexpensive

Why fDOT??

- Fluorescence diffuse optical tomography (f-DOT) is an attractive component of optical tissue tomography.
- Fluorescence tomography methods aim at reconstructing the concentration of fluorophores within the imaged object.
- Exogenous fluorophores furnish the desperately needed sensitivity and specificity that is lacking in NIR optical tomography.

WHY NIR??

 Existence of spectral region where the absorption of light by tissue is relatively low.

DIFFUSE OPTICAL TOMOGRAPHY

Light propogation in tissues:

 Major optical properties considered: scattering , absorption

FORWARD MODEL AND INVERSE MODEL IN OPTICAL TOMOGRAPHY

Main equations in DOT:

 RTE - Radiative transport equation - equation for the radiant intensity

 $\frac{1}{\nu} \frac{\partial L(\mathbf{r}, \hat{\Omega}, t)}{\partial t} + \nabla \cdot L(\mathbf{r}, \hat{\Omega}, t) \hat{\Omega} + \mu_{t} L(\mathbf{r}, \hat{\Omega}, t)$ $= \mu_{s} \int_{4\pi} f(\hat{\Omega}, \hat{\Omega}') L(\mathbf{r}, \hat{\Omega}', t) d\hat{\Omega}' + Q(\mathbf{r}, \hat{\Omega}, t),$

• Diffusion approximation:

$$-\nabla . \mathbf{k}(\mathbf{r}) \nabla \Phi(\mathbf{r}, \omega) + (\mu_a(\mathbf{r}) + \frac{i\omega}{c_m(\mathbf{r})}) \Phi(\mathbf{r}, \omega) = \mathbf{q}_0(\mathbf{r}, \omega)$$

Reconstruction:

$$\Delta \mu = [\mathbf{J}^T \mathbf{J} + \lambda \mathbf{I}]^{-1} J^T (\Phi^c - \Phi^M)$$

- Fluorophores are illuminated at a particular wavelength and the emission occurs at a different wavelength.
- Equations for fDOT:

$$(-\nabla D_x \nabla + \mu_{ax}(\mathbf{r}) + \varepsilon_x \mathbf{c}(\mathbf{r})) \Phi_x(\mathbf{r}) = \Theta_s \partial_0 (r - r_s)$$

 $(-\nabla D_m \nabla + \mu_{am}(\mathbf{r}))\Phi_f(\mathbf{r}) = \gamma_m \varepsilon_x c(\mathbf{r})\Phi_x(\mathbf{r})$

Fluorescence in Biological Media

Endogenous fluorophores :-

Exogenous fluorophores:

Extinction and emission properties of some selected fluorophores

Simulations

- Figs show a simulated model of a phantom with its optical properties similar to human tissue.
- Irradiated at 750nm.

Simulations:

- The fluorescence occurs at a wavelength (λ_{em}) at 783 nm
- The following figures shows the reconstructed fluorescence optical parameters (λ_{em}) at 783 nm

• It shows the dye accumulation in the inhomogeneity ,which fluoresce.

in-vivo and in-vitro studies

MDA-MB-231

MCF-7

THANK YOU FOR YOUR **ATTENTION! ANY QUESTIONS?**

FORWARD PROBLEM

- Radiative transport equation equation for the radiant intensity
- obtained by balancing the absorption and scatter mechanisms by which the photons can be gained or lost from arbitrary volume considered

- Diffusion approximation to RTE
- If the magnitude of the isotropic fluence within tissue is significantly larger than the directional flux magnitude ,i.e, the light field is 'diffuse'.
- The diffusion approximation in the frequency domain is given by

$$-\nabla . \mathbf{k}(\mathbf{r}) \nabla \Phi(\mathbf{r}, \omega) + (\mu_a(\mathbf{r}) + \frac{i\omega}{c_m(\mathbf{r})}) \Phi(\mathbf{r}, \omega) = \mathbf{q}_0(\mathbf{r}, \omega)$$

 $k = 1/3(\mu_a + \mu_s')$

• The air tissue boundary is represented by an index-mismatched type III condition (also known as Robin or mixed boundary condition)

• The flux leaving the external boundary is equal to the fluence rate at the boundary weighted by a factor that accounts for the internal reflection of light back into the tissue

 $\Phi(\xi,\omega) + 2\operatorname{An.k}(\xi)\nabla\Phi(\xi,\omega) = 0$

FINITE ELEMENT IMLEMENTATION

- volume, Ω , subdivided D elements joined at V vertex nodes.
- the fluence at a given point, $\Phi(r)$ is approximated by the piecewise continuous polynomial function

 $\Phi^h(\mathbf{r}) = \sum_{i=1}^{V} \Phi_i u_i(r) \Omega^h$

• Solution for $\phi(r)$ becomes a sparse matrix inversion -biconjugate gradient stabilized iterative solver .

- recovery of optical properties µ at each FEM node within the domain using measurements of light fluence from the tissue surface.
- inversion can be achieved using a modified-Tikhonov minimization.

$$X^{2} = \prod_{\mu}^{\min} \left\{ \sum_{i=1}^{NM} (\Phi_{i}^{M} - \Phi_{i}^{C})^{2} + \lambda \sum_{j=1}^{NN} (\mu_{j} - \mu_{0})^{2} \right\}$$

- It has been found that if the initial estimate, μ_0 , is not too far from the actual parameter distribution, second term can be ignored.
- Minimized function given by:

$$X^2 = \left\{ \sum_{i=1}^{NM} (\Phi_i^M - \Phi_i^C)^2 \right\}$$

• the equation for the optical property update is given by

 $\Delta \mu = [\mathbf{J}^T \mathbf{J} + \lambda \mathbf{I}]^{-1} J^T (\Phi^c - \Phi^M)$

- Where $\left(\frac{\partial \Phi^c}{\partial \mu}\right)$ the Jacobian matrix J.
- λ is the regularisation parameter

- Jacobian, sometimes referred to as the sensitivity or weight matrix, defines the relationship between changes in boundary data, and small changes in optical properties.
- Uses both amplitude and phase data

	$\delta \ln I_1$	$\delta \ln I_1$		$\delta \ln I_1$.	$\delta \ln I_1$	$\delta \ln I_1$		$\delta \ln I_1$
	δD_1	δD_2		δD_{NN} '	$\delta \mu_{a1}$	$\delta \mu_{a2}$		$\delta \mu_{aNN}$
	$\frac{\delta \theta_1}{\delta \theta_1}$	$\frac{\delta \theta_1}{\delta \theta_1}$		$\frac{\delta \theta_1}{\delta \theta_1};$	$\frac{\delta \theta_1}{2}$	$\delta \theta_1$		$\frac{\delta \theta_1}{2}$
	δD_1	δD_2		δD_{NN}	$\delta \mu_{a1}$	$\delta \mu_{a2}$		$\delta \mu_{aNN}$
	$\delta \ln I_2$	$\delta \ln I_2$		$\delta \ln I_2$.	$\delta \ln I_2$	$\delta \ln I_2$		$\delta \ln I_2$
	δD_1	δD_2		δD_{NN} '	$\delta \mu_{a1}$	$\delta \mu_{a2}$		$\delta \mu_{aNN}$
J =	$\delta \theta_2$	$\delta \theta_2$		$\delta \theta_2$.	$\delta \theta_2$	$\delta \theta_2$		$\delta \theta_2$
	δD_1	δD_2		δD_{NN} '	$\delta \mu_{a1}$	$\delta \mu_{a2}$		$\delta \mu_{aNN}$
	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:
	$\delta \ln I_{\rm NM}$	$\delta \ln I_{\rm NM}$		$\delta \ln I_{NM}$.	$\delta \ln I_{\rm NM}$	$\delta \ln I_{\rm NM}$		$\delta \ln I_{\rm NM}$
	δD_1	δD_2		$\delta D_{\scriptscriptstyle N\!N}$,	$\delta \mu_{a1}$	$\delta \mu_{a2}$		$\delta \mu_{aNN}$
	$\delta \theta_{\rm NM}$	$\delta \theta_{\rm NM}$		$\delta \theta_{\rm NM}$.	$\delta \theta_{\rm NM}$	$\delta \theta_{\rm NM}$		$\delta \theta_{\rm NM}$
	δD_1	δD_2		$\delta D_{_{N\!N}}$,	$\delta \mu_{a1}$	$\delta \mu_{a2}$		$\delta \mu_{aNN}$

FLUORESCENCE DIFFUSE OPTICAL TOMOGRAPHY

- Fluorescence diffuse optical tomography (f-DOT) is an attractive component of optical tissue tomography.
- Exogenous fluorophores furnish the desperately needed sensitivity and specificity that is lacking in NIR optical tomography
- Fluorescence tomography methods aim at reconstructing the concentration of fluorophores within the imaged object.
- provide a measure for receptor concentration, gene expression or enzymatic activity

• Fluorophores are illuminated at a particular wavelength and the emission occurs at a different wavelength.

- INDEPENDENT FORMULATION OF EXCITATION AND EMISSION
- Fluorochrome within domain Ω increases the absorption at λ by $\mathcal{E}C(r)$
- excitation wavelength λx and emission wavelength λm

$$(-\nabla D_x \nabla + \mu_{ax}(\mathbf{r}) + \varepsilon_x \mathbf{c}(\mathbf{r}))\Phi_x(\mathbf{r}) = \Theta_s \partial_0 (r - r_s)$$
$$(-\nabla D_m \nabla + \mu_{am}(\mathbf{r}))\Phi_f(\mathbf{r}) = \gamma_m \varepsilon_x c(\mathbf{r})\Phi_x(\mathbf{r})$$

PARALLEL INVERSION SCHEME

With F:
$$\mu_{a}(\mathbf{r}) + \varepsilon \mathbf{c}(\mathbf{r}) \leftarrow \frac{\text{DOT inversion}}{||} \Phi_{x}(\mathbf{r})$$

Without F: $\mu_{a}(\mathbf{r}) \leftarrow \frac{\text{DOT inversion}}{||} (\frac{1}{\gamma} \Phi_{f}(\mathbf{r}) + \Phi_{x}(\mathbf{r})) = \frac{\text{DOT inversion}}{||} \varepsilon \mathbf{c}(\mathbf{r})$

Fluorophore Concentration

$$(-\nabla D_x \nabla + \mu_{ax}(\mathbf{r}) + \varepsilon_x \mathbf{c}(\mathbf{r})) \Phi_x(\mathbf{r}) = \Theta_s \partial_0 (\mathbf{r} - \mathbf{r}_s)$$
$$(-\nabla D \nabla + \mu_a(\mathbf{r})) (\frac{1}{\gamma} \Phi_f(\mathbf{r}) + \Phi_x(\mathbf{r})) = \Theta_s \delta_0 (\mathbf{r} - \mathbf{r}_s)$$