Near-wall dynamics of microbubbles in an acoustical trap

L Wright, G Memoli (National Physical Laboratory), E
Stride (University of Oxford), P H Jones (University
College London)
18/9/14

Microbubbles

- Micron-scale radius bubbles, typically of inert gas with a thin polymer or lipid shell
- Used as ultrasound contrast agents and as a drug delivery mechanism via sonication
- Potential to work as microscale sensors
- Move \& excite acoustically, analyse reradiated signal to understand environment bubble is in.
- Understanding interaction between microbubbles, acoustic fields, and walls is key to future developments

Existing models

- Analytical models exist that assume radial symmetry
- Predict radius change over time: bubble pulses
- Can include bubble translation
- Can include interaction with walls or other bubbles
- Can simulate complicated shell behaviour
- Simplest model: Rayleigh-Plesset equation
- Spherical bubble with no shell in the middle of an infinite sphere of liquid

Need for finite element model

- Analytical models assume spherical bubble
- Less likely when bubble is excited at nearresonance
- Less likely when bubble is near a wall
- Both of these conditions are likely to occur for the applications of interest
- Use FE to predict shape changes under acoustic excitation
- Drive for developing \& validating new analytical models?

FE model requirements

- Need to simulate a transient two-phase compressible flow with no mixing
- Comsol CFD module: level-set method with compressible flow and surface tension
- Need to simulate domains much larger than the bubbles where little of interest is happening
- Comsol Acoustics module: radiation boundary conditions allow scattered signal to leave, incident field capability allows excitation field to be included
- Couple via pressure \& normal stress conditions

Axisymmetric model of a bubble near a wall

Initial development

- 0.932 micron radius bubble of compressible polytropic air in compressible water: neglect shell properties
- Driven by an incident pressure of 95 kPa at a single frequency over 7.5 microseconds.
- Start with a centred bubble (no translational motion)
- Compare with Rayleigh-Plesset equation
- Place bubbles at various distances from the wall
- Look at sphericity
- Test one frequency far from resonance (1 MHz) and one closer to resonance (2 MHz)
- Linearised estimate of resonanace is 3.5 MHz

Comparison with Rayleigh-Plesset NPL[0]

Sphericity?

National Physical Laboratory

- All of the bubbles at 1 MHz stayed spherical:
- Ellipsoids fitted to isosurfaces showed less than 0.5% difference between semi-axes throughout
- Separation from wall did not affect sphericity
- Bubbles at 2 MHz did not complete run
- Still working on why: high fluid velocity near the interface seems to cause a problem
- Tried changing interface resolution parameter
- Any advice gratefully received...

Typical behaviour

Effects of wall on radial oscillationNPL[

Effects of wall on centre motion

Why?

National Physical Laboratory

- Radial oscillation is largely driven by the timedependence of the pressure amplitude
- Pressure gradient across the bubble has little effect for this example
- Centre motion is largely driven by the pressure gradient across the bubble
- Analytical model for this behaviour is available
- Requires proper characterisation of pressure to get reliable results

Conclusions and next work

- Comsol enables us to simulate the detailed shape of an acoustically excited microbubble by coupling modules
- Bubbles away from resonance stay spherical when excited
- Characterise pressure then compare FE model to analytical solution
- Extend to multiple frequencies to simulate experimental situation

National Physical Laboratory

Thankyou! Questions?

COMSOL CONFERENCE 2014CAMBRIDGE

