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Abstract: We have measured the voltage vs 

distance     characteristics at constant current 

  of a tunnel junction consisting of an electron 

emitting sharp tip placed at a variable distance   

from a planar anode. At sufficiently large 

distances, i.e. in the regime of electric field 

assisted quantum tunneling, the    
characteristics for different currents follow 

approximately a power law, the exponent λ being 

independent of the current. Here we compare and 

discuss the origin of the observed power law and 

the measured value of it in terms of electrostatic 

properties of the tip-plane junction, taking the 

geometry of the tip as a hyperboloid of 

revolution. 

Keywords: Field-emission electron microscopy. 

1. Introduction

A sharp tip approached perpendicular to a 

conducting surface at subnanometer distances 

and biased with a small voltage builds a junction 

across which electrons can be transferred from 

the tip apex to the nearest surface atom by direct 

quantum mechanical tunneling. Such a junction 

is used e.g. in Scanning Tunneling Microscopy 

(STM). When the distance   between tip and 

collector is increased beyond some nanometers, 

the junction enters the electric field assisted 

regime, the one underlying the topografiner 

technology –an imaging technique widely used 

in micro- and nano-electronics. Recent 

experiments
1
 in this regime suggest a scaling law 

which can be tested numerically by verifying the 

collapsing of a family of       -curves, 

computed at different  , onto one single curve 

when      is multiplied by a suitable 

        , see Fig. 1. 

 

 

 

 

 

 

 

 

2. The Experiment

Figure 2 shows the scanning tip and the 

sample in front of this, the setup used for the 

measurements. For the experiments with the 

distance   in the sub-nm to nm range the 

collecting plane (sample) is a W(110) or a 

Si(111) single-crystal surface, prepared with 

standard surface techniques in a base pressure of 

       mbar. By mounting the tip onto a 

piezocrystal, that can move the tip perpendicular 

to the surface, the distance can be varied. The 

value of   was also double checked by means of 

an optical sensor device, integrated ad hoc into 

our home-made STM microscope. 

Figure 1. Potential profile      along the tip axis, for 

a given distance  . The tip used in this COMSOL-

simulation is a hyperboloidal model of a “real” tip 

(       nm,       ). The planar 

counterelectrode is moved between      nm and 

       nm. All profiles are made to approximately 

collapse onto the reference curve by maximal 

(experimental) value of   when the potential      is 

multiplied by     , this factor plotted in the top 

corner of the figure, see inset. Notice that both     
and the scale profile in the inset behave as a power 

law1. 
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3. Governing Equations

A schematic view of the experimental setup 

is sketched in Figure 3. We consider a 

conducting tip, defined - within the purpose of 

this paper - as an infinitely long object with 

“small” cross section, ending with a more or less 

sharp apex. A rounding of the cone tip limits its 

sharpness to nm radius of curvature, depending 

on the details of the tip preparation in an ultra-

high vacuum
2
. 

3.1 The electrostatic model 

In order to consider the electrostatic problem, 

we have to solve the Laplace equation for the 

sought for electrostatic potential    ⃗   

considering the tip and the plane as equipotential 

boundaries. In addition, we have to consider a 

“highly symmetric realistic” tip shape. This 

expression describes the fact that the geometry 

must be – first – close to the shape one expects 

for “real” tips (as revealed by a systematic tip 

imaging via light and electron microscopy
1
) and 

– second – sufficiently symmetric so that the

electrostatic problem can be solved to a large 

extent analytically. In the used model, the tip, 

kept at ground potential, is placed vertical to a 

conducting plane set at the voltage   . The 

distance between the apex of the tip and the 

plane is  . Denoting with   the region of space 

excluding the tip and the plane, the electrostatic 

problem is a well defined Dirichlet problem for 

the electric potential    ⃗  : 

 

 

 

 

 

 

 

 

 

the last equation being the consequence of the 

maximum principle of harmonic functions. The 

solution of this problem is unique and can be 

computed, at least numerically, in the entire 

space  . However, we will discuss the tunneling 

current density, which is built up within a very 

small distance from the tip apex and mainly 

along the tip axis
3,4

. Accordingly, we focus our 

attention to finding the behavior of the potential 

in the vicinity of the tip apex and along the tip 

axis, i.e. on finding              for small 

  (we set the origin the coordinates       at the 

tip apex). In addition, we will focus on 

evidencing the scaling behavior of      on the 

parameters   and  , which are typically imposed 

experimentally
1
. 

in  ,  

on the surface of the tip,  (1) 

on the, plane 
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Figure 2. The experimental setup: Tip –and sample-

unit of the STM microscope. 

   

Figure 3.  The diodelike tunnel junction modelled 

within a prolate-spheroidal coordinate system. A 

point (black dot) in the     plane is the 

intersection between a line of constant prolate 

spheroidal coordinate   (an ellipse with focal 

points at   along the axis  ) and a line of 

constant spheroidal coordinate   (a hyperbola 

with focus at   or –  ). The hyperboloidal 

profile has two asymptotic straight lines crossing 

at the origin of the coordinate system and 

spanning a full angle of aperture    which 

determines the exponent   in the power law 

    . 
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3.2 The tip as a cone 

The cone geometry describes the shape of 

real tips on the micrometer scale
1
. They contain a 

true singularity at the tip apex. For both distant 

      and near (  small) planes the potential 

has a leading term 

       ( 

 
)
  

.           (2) 

For small angles of aperture of the cone    (in 

radians) the exponent    is given by
5,6

        
           

  .      corresponds to a planar 

emitter and gives     . 

3.3 Hyperboloid of revolution 

For the tips used in this experiment, not the 

cone, but the hyperboloid of revolution model is 

particularly suitable for mimicking the rounded 

tip with overall conical shape. It has, in fact, two 

asymptotes that can be used to define a full angle 

or aperture   . The two asymptotes meet at a 

point in front of the apex that is located on the so 

called confocal plane. The focal length   is the 

distance between this point and the focal point of 

the hyperboloid, which is located within the tip 

along the tip axis. For these geometries the 

scaling properties of the leading potential term 

depend on whether the plane is “distant” 

      or “near”       

{
        

 
                    

       ( 

 
)
  

  

 
       

     (3) 

with    being given by same equation as in the 

cone. 

Saint Venant’s principle
7
 implies an 

interesting scaling symmetry of the electric field 

assisted tunneling junction. In fact, one can use 

this principle to extend the conical solution of 

the problem
6
 to real tips if they can be viewed as 

a cone with a rounded apex. Because of Saint 

Venant’s principle if the rounding of the cone 

singularity is local enough – say appears on a 

length scale   – the conical solution can be used 

in the following range as well: 

          ( 

 
)
  

                 (4) 

This equation represents a scaling law which can 

be tested numerically by verifying, e.g., the 

collapsing of the family of       -curves, taken 

for different  , onto one single curve when     

is multiplied by a suitable        .  

4. Use of COMSOL Multiphysics

The search for the origin of power laws in 

this experiment required the systematic study of 

different electrostatic geometries using the 

AC/DC COMSOL Module. For the computation 

of the electric potential, we have fitted a 

hyperboloid of revolution onto the electron 

microscope micrograph of the tip used for the 

taking of the experimental    -curves. The 

equipotential surface of the tip was defined with 

a parametric curve. Subsequently, we have used 

COMSOL to compute      in the presence of a 

plane placed at well-defined (large) distance in 

front of the hyperboloidal tip (Figure 4). 

5. Results and discussion

Figure 4 shows an experimental V-d 

characteristic curve. In a typical experiment, the 

current is set to some prefixed value. The 

distance   is then varied and the voltage required 

to keep the current at the prefixed value is 

measured. In the range      nm, the 

experimental data follow a power law    , with 

λ=0.21±0.05. For smaller values of   the 

dependence becomes  

Figure 4.  COMSOL-simulation for the diodelike 

junction showing the electric potential. The tip 

has a voltage of        V and the sample in 

front is set at      V, as in the experiment. 
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almost linear, indicating that the junction 

behaves as a plane capacitor at short distances: 

Direct tunneling typically occurs in this 

geometry. 

The result of the COMSOL-simulation is 

also presented in Fig. 4. Notice that a realistic 

simulation of the full process involving electric 

field assisted quantum tunneling is a difficult 

task. It appears, however, on the basis of our 

simulation, that knowledge of the electrostatics 

alone is already providing a satisfactory 

explanation of the observed scaling results. The 

tip was modeled as a hyperboloid of revolution 

and the sample was a plane placed at fixed 

distance        nm (the largest distance 

measured in experiment). Plotted in the Figure 

(blue color) are the values of the electric 

potential   as function of the spatial coordinate 

  along the tip axis. It turns out that the two 

curves (COMSOL-simulation      and 

experiment       can be rescaled onto each 

other with great accuracy and almost within the 

entire range. To find an explanation of this 

similarity –at least on a qualitative level– we turn 

to the actual process that governs the emission of 

electron from a sharp tip in the regime of large 

 : the electric field assisted regime, which can be 

described by the quantum-mechanical Gamov 

exponent. In its simplest version, this is given by 

 
√  

 
∫ √  |     |

  

  
                (5) 

  being the work function of the tip and the 

spatial integration being performed between the 

classical turning points   . One could agree that 

the similarity presented in Fig. 4 and the almost 

power law behavior recorded can be explained 

by the following Ansatz: 

       ( 

 
)
 
.  (6) 

This Ansatz would be correct for a conical 

tip, but both COMSOL-simulation and 

experiments, which record some deviation from 

a power law in the small   (and  ) regime, 

suggest that for a realistic tip (with apex 

rounding) this Ansatz is an oversimplification, 

although at large distances it works well. We are 

in the process of finding a more accurate 

explanation for the similarity between      and 

     over such large distances. Regarding the 

value of the exponent  : our COMSOL-

simulations find that the exponent   is related to 

the angle of aperture of the hyperboloid, i.e. the 

angle    between the axis of  

the hyperboloid and its asymptotes. This relation 

was suggested by Jackson
6
 for the analytically 

solvable problem of a conical tip but it appears to 

hold true for the more realistic hyperboloidal 

shape. 

A further consequence of Eq. (6) is that an 

experiment where   is changed and   is adjusted 

so that the tunneling current (i.e., the potential 

within the tunneling barrier) is kept constant 

gives     , the same power law dependence 

one expects for the  -dependence of the potential 

  itself. In other words, we expect that all 

experimental     graphs can be made first to 

collapse onto themselves and (see inset of Fig. 4) 

and second can also be collapsed onto a     
profile, provided one is not too close to     or 

     

Figure 4.  Scaling of      and     . The 

continuos line is the potential profile obtained as 

described in the caption to Fig., for       
nm. The full squares are      data points 

obtained at a given current, the current of     pA 

having being chosen so that the      curve 

almost lies onto the      graph, without need of 

a rescaling factor. Inset:      data points 

obtained in a junction with Si(111) at selected 

currents (given in the inset). The data are 

rescaled, in the inset, so that they fall onto the 

same power law. The potential profile computed 

for       nm (continuos curve) can also be 

rescaled onto the same curve as the      data. 
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6. Conclusions

In the range      nm, the experimental 

data follow a power law    , with        
    . For smaller values of   the dependence 

becomes almost linear, indicating that the 

junction behaves as a plane capacitor at short 

distances: Direct tunneling typically occurs in 

this geometry. These essential features observed 

experimentally are captured by introducing the 

potential   computed for “realistic” tips into 

standard equations for electric field assisted 

tunneling. This highlights the potential of 

COMSOL-simulation in the context of field-

emission electron microscopy. 
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