

AdOpt IF

INAE - Arceti

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparisor

Summary

Computing the Influence Functions of an Adaptive Optics Large Deformable Mirror: the Numerical Method and the Experimental Data

C. Del Vecchio¹ R. Briguglio¹ M. Xompero¹ A. Riccardi¹ D. Gallieni² R. Biasi³

¹INAF–OAA, Firenze, Italy ²ADS International, Valmadrera, Italy ³Microgate, Bolzano, Italy

2013 Comsol Conference Rotterdam, Oct 24 2013

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

Rationale

- The AO Principle
- Motivation
- 2) Static assumptions and simplifications
 - The model
 - Local CS's
 - Results

3

- LBT
- VLT
- Experimental validation
 - Set-up and procedure
 - Comparison

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

Rationale

- The AO Principle
- Motivation

Static assumptions and simplifications

- The model
- Local CS's

Results

LBT VLT

Experimental validation

- Set-up and procedure
- Comparison

Compensating the Atmospheric Turbulence The Control System Concept

AdOpt IF

Del Vecchio et al.

Rationale The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

Rationale

The AO Principle

Motivation

Static assumptions and simplifications

- The model
- Local CS's

Results

LBT VLT

Experimental validation

- Set-up and procedure
- Comparison

The Control System Improving the Closed-Loop Response

AdOpt IF

Del Vecchio et al.

Rationale The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

- A *feed-forward*, open-loop correction dramatically increases the closed-loop response of the servo system
 - This correction is based on the DM stiffness matrix ...
 - ... operatively defined by arbitrarily displacing one actuator, while all the others are constrained at 0, and calculating the reaction forces
 - The *influence function* (IF) is the shape of the DM when poking a single actuator

The Control System Improving the Closed-Loop Response

AdOpt IF

Del Vecchio et al.

Rationale The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

- A *feed-forward*, open-loop correction dramatically increases the closed-loop response of the servo system
- This correction is based on the DM stiffness matrix ...
 - ... operatively defined by arbitrarily displacing one actuator, while all the others are constrained at 0, and calculating the reaction forces
- The *influence function* (IF) is the shape of the DM when poking a single actuator

The Control System

AdOpt IF

Del Vecchio et al.

Rationale The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

- A *feed-forward*, open-loop correction dramatically increases the closed-loop response of the servo system
- This correction is based on the DM stiffness matrix ...
 - ... operatively defined by arbitrarily displacing one actuator, while all the others are constrained at 0, and calculating the reaction forces
- The *influence function* (IF) is the shape of the DM when poking a single actuator

The Control System Improving the Closed-Loop Response

AdOpt IF

Del Vecchio et al.

Rationale The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

- A *feed-forward*, open-loop correction dramatically increases the closed-loop response of the servo system
- This correction is based on the DM stiffness matrix ...
- ... operatively defined by arbitrarily displacing one actuator, while all the others are constrained at 0, and calculating the reaction forces
- The *influence function* (IF) is the shape of the DM when poking a single actuator

AdOpt IE

The Case Studies ² Zerodur DM's

/ dopt ii					
Del Vecchio et al.				LBT	VLT
			Ro	455.5 mm	558 mm
The AO			R_i	28 mm	48 mm
Principle Motivation	R _o /R _i K./K.	physical outer/inner radii front/back surface conic constants	t _m	1.6 mm	2.0 mm
	R _f /R _b t _m N	front/back surface optical radii mean thickness total number of actuators	R_b	1994.9 mm	4575.30 mm
			K _b	0	0
The model			R_{f}	1974.24 mm	4575.3 mm
Local CS's			K _f	-0.7330	-1.66926

LBT VLT

Experimenta validation

Set-up and procedure Comparison

Summary

Concave Large Binocular Telescope DM [Riccardi et al., 2010] Convex Very Large Telescope DM [Biasi et al., 2012]

N

1170

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications

The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

Rationale

- The AO Principle
- Motivation

Static assumptions and simplifications

- The model
 - Local CS's

Results

LBT VLT

Experimental validation

- Set-up and procedure
- Comparison

Approximation I: Functioning the Geometry From the Optical Parameters to the Full Axi-symmetric Shell

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications

The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

Summary

• Matlab generation of z(r), $r = \sqrt{x^2 + y^2}$ front surface $z_f = z_f(r, K_f, R_f)$ back surface $z_b = z_b(r, K_b, R_b)$ • fitting with polynomials of degree M = 9: mean surface $z = \frac{1}{2}(z_f + z_b) = \sum_{i=1}^{M+1} V(i)r^{M+1-i}$ normal $\varphi = -\arctan\left(\frac{dz}{dr}\right) = \sum_{i=1}^{M+1} P(i)r^{M+1-i}$ thickness $t = |z_f - z_b| = \sum_{i=1}^{M+1} Q(i) r^{M+1-i}$

ション キロ・トロ・トロー ひょう

Approximation II: Replacing the Magnet From the 3D Puck to a 6-Elements Load Spreader

- Experimenta validation
- Set-up and procedure Comparison

- 3 trusses, $K = EA/I = K_p/3 \hookrightarrow 3$ glue contacts, $r = 50 \ \mu m$
- trusses \Leftarrow 3 beams, $K = \infty \Rightarrow$ actual push/pull node
- **3** local *r* and **3** local θ constraints

Approximation III: Replacing the Trusses What the FEM Looks Like

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications

The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

Summary

One more approximation fake beams ($I_{yy} = I_{zz} = J \approx 0$) instead of trusses (EVEN IF A COMSOL WORK-AROUND IS AVAILABLE)

	LBT	VLT
shell elements	19144	32824
beam elements	4032	7020
dof's	253×10^{3}	$434 imes10^{6}$

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

Rationale

- The AO Principle
- Motivation

2 Static assumptions and simplifications

- The model
- Local CS's

Results

- LBT
- Experimental validation
 - Set-up and procedure
 - Comparison

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation Set-up and procedure

Summary

The global-to-local and local-to-global transformation matrices G2L and $L2G = G2L^{-1}$

 $\mathbf{G2L} = \begin{bmatrix} \cos(\varphi)\cos(\theta) & \cos(\varphi)\sin(\theta) & \sin(\varphi) \\ -\sin(\theta) & \cos(\theta) & 0 \\ -\cos(\theta)\sin(\varphi) & -\sin(\varphi)\sin(\theta) & \cos(\varphi) \end{bmatrix}$ $\mathbf{L2G} = \begin{bmatrix} \cos(\varphi)\cos(\theta) & -\sin(\theta) & -\cos(\theta)\sin(\varphi) \\ \cos(\varphi)\sin(\theta) & \cos(\theta) & -\sin(\varphi)\sin(\theta) \\ \sin(\varphi) & 0 & \cos(\varphi) \end{bmatrix}$

BUT ... Comsol hangs up

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation Set-up and procedure Comparisor

Summary

The global-to-local and local-to-global transformation matrices **G2L** and $L2G = G2L^{-1}$

 $\mathbf{IG2L} = \begin{bmatrix} \cos(\varphi)\cos(\theta) & \cos(\varphi)\sin(\theta) & \sin(\varphi) \\ -\sin(\theta) & \cos(\theta) & 0 \\ -\cos(\theta)\sin(\varphi) & -\sin(\varphi)\sin(\theta) & \cos(\varphi) \end{bmatrix}$ $\mathbf{L2G} = \begin{bmatrix} \cos(\varphi)\cos(\theta) & -\sin(\theta) & -\cos(\theta)\sin(\varphi) \\ \cos(\varphi)\sin(\theta) & \cos(\theta) & -\sin(\varphi)\sin(\theta) \\ \sin(\varphi) & 0 & \cos(\varphi) \end{bmatrix}$

BUT ... Comsol hangs up

Avoid 672 or 1170 auxiliary coordinate systems Define constraints and forces analytically (*functioning*)

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation Set-up and procedure Comparison

Summary

The global-to-local and local-to-global transformation matrices **G2L** and $L2G = G2L^{-1}$

 $\mathbf{G2L} = \begin{bmatrix} \cos(\varphi)\cos(\theta) & \cos(\varphi)\sin(\theta) & \sin(\varphi) \\ -\sin(\theta) & \cos(\theta) & 0 \\ -\cos(\theta)\sin(\varphi) & -\sin(\varphi)\sin(\theta) & \cos(\varphi) \end{bmatrix} \\ \mathbf{L2G} = \begin{bmatrix} \cos(\varphi)\cos(\theta) & -\sin(\theta) & -\cos(\theta)\sin(\varphi) \\ \cos(\varphi)\sin(\theta) & \cos(\theta) & -\sin(\varphi)\sin(\theta) \\ \sin(\varphi) & 0 & \cos(\varphi) \end{bmatrix}$

Comsol hangs up

Avoid 672 or 1170 auxiliary coordinate systems (*functioning) (functioning*) Oefine constraints and forces analytically

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

Summary

The global-to-local and local-to-global transformation matrices **G2L** and $L2G = G2L^{-1}$

 $\mathbf{G2L} = \begin{bmatrix} \cos(\varphi)\cos(\theta) & \cos(\varphi)\sin(\theta) & \sin(\varphi) \\ -\sin(\theta) & \cos(\theta) & 0 \\ -\cos(\theta)\sin(\varphi) & -\sin(\varphi)\sin(\theta) & \cos(\varphi) \end{bmatrix}$ $\mathbf{L2G} = \begin{bmatrix} \cos(\varphi)\cos(\theta) & -\sin(\theta) & -\cos(\theta)\sin(\varphi) \\ \cos(\varphi)\sin(\theta) & \cos(\theta) & -\sin(\varphi)\sin(\theta) \\ \sin(\varphi) & 0 & \cos(\varphi) \end{bmatrix}$

BUT Comsol hangs up

Avoid 672 or 1170 auxiliary coordinate systems Define constraints and forces analytically (*functioning*)

Functioning Restraint and Force Equations I The Coordinate Definitions

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

P ₁	<i>N</i> × 3	interface nodes	$X_{I_{i,j}}, Y_{I_{i,j}}$	
		(truss/beam intersection)		
Δ.	N×2	interface angles	alu	
	N X S	(truss/beam intersection)	ψ_j	
D_	N	actuation nodes	V_ V_	
	71	(beam intersections)	$\wedge F_i, \forall F_i$	

 $i = 1, 2, \dots, 3N$ j = 1, 2, 3

 $\psi = 0, \pm (2/3)\pi$ for j = 1, 2, 3 are defined wrt the actuation axis

Functioning Restraint and Force Equations II The Interpolation Function

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

Summary

Matlab generation of a $4N \times 5$ matrix whose rows from *i* to i + 4 are defined as

This matrix is used as table data source of the Comsol nearest neighbor interpolation function $\Gamma(x, y)$.

 $\Gamma(\zeta_{i,j},\eta_{i,j})$, where $(\zeta_{i,j} = X_{F_i}, \eta_{i,j} = Y_{F_i})$

- associates to the P_I coordinates the coordinates of the correspondent P_F
- defines for each P_i the three angles $\Theta_{i,j} = \psi_j$.

Functioning Restraint and Force Equations III

AdOpt IF

Del Vecchio et al.

The AO

Principle Motivation

The model

Set-up and

procedure

Defining

- $\rho = \sqrt{\zeta^2 + \eta^2}$ • $\theta' = \arctan(\eta/\zeta)$ • $\varphi' = \sum_{i=1}^{M+1} P'(i) \rho^{M+1-i}$
- Recalling
 - $\mathbf{u} = [u; v; w]$ displacement vector in the global cs
- Substituting in G2L
 - θ with θ'
 - φ with φ'

local displacement in the cs relative to each actuation axis $\mathbf{u}_l = [u_l; v_l; w_l] = \mathbf{Gu}$

Functioning Restraint and Force Equations IV The Pointwise Constraints

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

Summary

N pointwise constraints in (1) apply the strokes to P_F

• 3*N* pointwise constraints (2) and (3) radially and tangentially (in the cylindrical local cs of each actuator) apply the constraints to P_1

$$w_{l_k} = \begin{cases} 0 & \text{if } k \neq i \\ w^* & \text{if } k = i \end{cases}$$
(1)

$$u_{l_k}\cos(\psi_j) + v_{l_k}\sin(\psi_j) = 0$$
 $j = 1, 2, 3$ (2)

$$-u_{l_k}\sin(\psi_j) + v_{l_k}\cos(\psi_j) = 0$$
 $j = 1, 2, 3$ (3)

w^{*} displacement of the kth (k = 1, 2, \dots , N) actuator along its axis

Adding a small set of analytic functions allows the computation of the *N* IF's avoiding any additional auxiliary coordinate system

Functioning Restraint and Force Equations IV The Pointwise Constraints

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

Summary

N pointwise constraints in (1) apply the strokes to P_F 3*N pointwise constraints* (2) and (3) radially and tangentially (in the cylindrical local cs of each actuator) apply the constraints to P_I

$$w_{l_k} = \begin{cases} 0 & \text{if } k \neq i \\ w^* & \text{if } k = i \end{cases}$$
(1)

$$u_{l_k}\cos(\psi_j) + v_{l_k}\sin(\psi_j) = 0$$
 $j = 1, 2, 3$ (2)

$$-u_{l_k}\sin(\psi_j) + v_{l_k}\cos(\psi_j) = 0 \quad j = 1, 2, 3$$
(3)

displacement of the kth (k = 1, 2, ..., N) actuator along its axis

Adding a small set of analytic functions allows the computation of the *N* IF's avoiding any additional auxiliary coordinate system

The Matlab Solving Function

Running the Loop (without Involving the Comsol GUI)

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

The Matlab function

- loads the model file
- runs the IF, taking the actuator number(s) as input vector
- computes the forces and the displacements along the DM r, φ , and θ

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

Summary

Rationale

- The AO Principle
- Motivation
- 2 Static assumptions and simplifications
 - The model
 - Local CS's

Results

3

VLT

Experimental validation

- Set-up and procedure
- Comparison

LBT

The LBT Results I

The Main Diagonal of the 672 by 672 LBT DM Stiffness Matrix vs. the Actuator Geometry

The LBT Results II The IF # 145

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

Summary

Rationale

- The AO Principle
- Motivation
- 2 Static assumptions and simplifications
 - The model
 - Local CS's

Results

3

LBT

Experimental validation

- Set-up and procedure
- Comparison

The VLT Results I

The Main Diagonal of the 1170 by 672 1170 DM Stiffness Matrix vs. the Actuator Geometry

The VLT Results II The IF # 377

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation Set-up and

procedure Comparison

Summary

(日) 4월 > 4월 > 4월 > 4월 > 400

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

Rationale

- The AO Principle
- Motivation

Static assumptions and simplifications

- The model
- Local CS's

Results

- LBT
- Experimental validation
- Set-up and procedure
 - Comparison

The Optical Test Bench The System Installed @ LBT, Arizona

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

The optical train

- Interferometer
- Telescope M3
- DM (M2)
- Retro-reflecting mirror
- DM (M2)
- Telescope M3
- Interferometer

The Sampling Procedure Getting the Deformation Map

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

Synchronization: Mirror command & imaging

Interferometer images captured

Image captured

Frame rate = 25 Hz to reduce noise Push-Pull to increase SNR

Analysis Procedure Getting the Stiffness

Del Vecchio et al.

Rationale The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparisor

Summary

K = F/d:

- Force read by the actuator current driver
- Displacement measured with the interferometer

Interferometric Example Typical Deformation Maps

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

LBT

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation Set-up and

procedure Comparison

Summary

Rationale

- The AO Principle
- Motivation
- 2 Static assumptions and simplifications
 - The model
 - Local CS's

Results

- LBT VLT
- Experimental validation
 - Set-up and procedure
- Comparison

Matching the Comsol Results

The Concordance and the Limitations

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation Set-up and

procedure Comparison

Matching the Comsol Results

The Concordance and the Limitations

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation Set-up and

procedure Comparison

Matching the Comsol Results

The Concordance and the Limitations

AdOpt IF

Del Vecchio et al.

Rationale

- The AO Principle Motivation
- Static assumptions and simplifications The model Local CS's
- Results LBT VLT
- Experimental validation Set-up and procedure
- Comparison

- inter-actuator force calibration
- poor image resolution
- uncertainty of the imaged actuator locations
- poor IF visibility on the edges
- effects of malfunctioning actuators

Lessons Learned & Future Work

AdOpt IF

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

Exploiting the unrestrainedness

Although originated by a flaw of the code, functioning of a definition reveals the powerful of the flexibility of Comsol

- The availability of the Matlab tools allows
- (general) geometry generation
- (compact) definition of pointwise constraints via $\Gamma(x, y)$
- (for loop) solving N cases

Lessons Learned & Future Work

•	-14	<u></u>			
A	7	.)	n	П	-
• •	.	-	۳.		

Del Vecchio et al.

Rationale

The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimenta validation

Set-up and procedure Comparison

Summary

The accuracy of the results is demonstrated by the experimental data

Lessons Learned & Future Work

AdOpt IF

Del Vecchio et al.

Rationale The AO Principle Motivation

Static assumptions and simplifications The model Local CS's

Results LBT VLT

Experimental validation

Set-up and procedure Comparison

Summary

The powerful of functioning

The influence functions of an Adaptive Optics Deformable Mirror can be truthfully evaluated by numerical methods.

A powerful and reliable computational tool is available for the opto-mechanical design.

For Further Reading I

AdOpt IF

Del Vecchio et al.

Appendix

 Biasi, R., Andrighettoni, M., Angerer, G., Mair, C., Pescoller, D., Lazzarini, P., Anaclerio, E., Mantegazza, M., Gallieni, D., Vernet, E., Arsenault, R., Madec, P.-Y., Duhoux, P., Riccardi, A., Xompero, M., Briguglio, R., Manetti, M., and Morandini, M. (2012).
 VLT deformable secondary mirror: integration and electromechanical tests results.
 In Ellerbroek, B. L., Marchetti, E., and Véran, J.-P., editors, *Adaptive Optics Systems III*, volume 8447 of *Proc. SPIE*. SPIE.

For Further Reading II

AdOpt IF

Del Vecchio et al.

Appendix

 Riccardi, A., Xompero, M., Briguglio, R., Quirós-Pacheco, F., Busoni, L., Fini, L., Puglisi, A., Esposito, S., Arcidiacono, C., Pinna, E., Ranfagni, P., Salinari, P., Brusa, G., Demers, R., Biasi, R., and Gallieni, D. (2010). The adaptive secondary mirror for the large binocular telescope: optical acceptance test and preliminary on-sky commissioning results. In Ellerbroek, B. L., Hart, M., Hubin, N., and Wizinowich, P. L., editors, *Adaptive Optics Systems*, volume 7736 of

Proc. SPIE. SPIE.