AdOpt IF
Del Vecchio et al.

Computing the Influence Functions of an Adaptive Optics Large Deformable Mirror: the Numerical Method and the Experimental Data

C. Del Vecchio ${ }^{1}$ R. Briguglio ${ }^{1}$
$\begin{array}{lll}\text { A. Riccardi } & \text { D. Gallieni } & \text { R. Biasi }\end{array}$
${ }^{1}$ INAF-OAA, Firenze, Italy ${ }^{2}$ ADS International, Valmadrera, Italy ${ }^{3}$ Microgate, Bolzano, Italy

2013 Comsol Conference Rotterdam, Oct 242013

Outline

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental
validation
Set-up and procedure
Comparison
Summary
(1) Rationale

- The AO Principle
- Motivation

2 Static assumptions and simplifications

- The model
- Local CS's
(3) Results
- LBT
- VLT
(4) Experimental validation
- Set-up and procedure
- Comparison
$11-$ Compensating the Atmospheric Turbulence The Control System Concept

AdOpt IF
Del Vecchio et al．

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS＇s
Results
LBT
VLT
Experimental validation

The Control System

Improving the Closed-Loop Response

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static

- A feed-forward, open-loop correction dramatically increases the closed-loop response of the servo system This correction is based on the DM stiffness matrix ...
- . . . operatively defined by arbitrarily displacing one actuator, while all the others are constrained at 0 , and calculating the reaction forces
The influence function (IF) is the shape of the DM when poking a single actuator

The Control System

Improving the Closed-Loop Response

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation

- A feed-forward, open-loop correction dramatically increases the closed-loop response of the servo system
- This correction is based on the DM stiffness matrix operatively defined by arbitrarily displacing one actuator, while all the others are constrained at 0, and calculating the reaction forces
The influence function (IF) is the shape of the DM when poking a single actuator

The Control System

Improving the Closed-Loop Response

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental

- A feed-forward, open-loop correction dramatically increases the closed-loop response of the servo system
- This correction is based on the DM stiffness matrix ...
- . . . operatively defined by arbitrarily displacing one actuator, while all the others are constrained at 0 , and calculating the reaction forces
The influence function (IF) is the shape of the DM when poking a single actuator

The Control System

Improving the Closed-Loop Response

AdOpt IF

```
Del Vecchio
``` et al.

Rationale
The AO
Principle Motivation

Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental
- A feed-forward, open-loop correction dramatically increases the closed-loop response of the servo system
- This correction is based on the DM stiffness matrix ...
- .. operatively defined by arbitrarily displacing one actuator, while all the others are constrained at 0 , and calculating the reaction forces
- The influence function (IF) is the shape of the DM when poking a single actuator

\section*{The Case Studies} 2 Zerodur DM's

\author{
AdOpt IF
}

Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure Comparison
\begin{tabular}{|c|c|c|}
\hline & LBT & VLT \\
\hline\(R_{o}\) & 455.5 mm & 558 mm \\
\hline\(R_{i}\) & 28 mm & 48 mm \\
\hline\(t_{m}\) & 1.6 mm & 2.0 mm \\
\hline\(R_{b}\) & 1994.9 mm & 4575.30 mm \\
\hline\(K_{b}\) & 0 & 0 \\
\hline\(R_{f}\) & 1974.24 mm & 4575.3 mm \\
\hline\(K_{f}\) & -0.7330 & -1.66926 \\
\hline \(\mathbf{N}\) & 672 & 1170 \\
\hline
\end{tabular}

Concave Large Binocular Telescope DM [Riccardi et al., 2010] Convex Very Large Telescope DM [Biasi et al., 2012]

\section*{Outline}

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure Comparison

Summary
(1) Rationale
- The AO Principle
- Motivation

2 Static assumptions and simplifications
- The model
- Local CS's
3) Results
- LBT
- VLT

4 Experimental validation
- Set-up and procedure
- Comparison

\section*{Approximation I: Functioning the Geometry} From the Optical Parameters to the Full Axi-symmetric Shell

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle Motivation
- Matlab generation of \(z(r), r=\sqrt{x^{2}+y^{2}}\) front surface \(z_{f}=z_{f}\left(r, K_{f}, R_{f}\right)\) back surface \(z_{b}=z_{b}\left(r, K_{b}, R_{b}\right)\)
- fitting with polynomials of degree \(M=9\) :
\[
\begin{aligned}
\text { mean surface } z & =\frac{1}{2}\left(z_{f}+z_{b}\right)=\sum_{i=1}^{M+1} V(i) r^{M+1-i} \\
\text { normal } \varphi & =-\arctan \left(\frac{d z}{d r}\right)=\sum_{i=1}^{M+1} P(i) r^{M+1-i} \\
\text { thickness } t & =\left|z_{f}-z_{b}\right|=\sum_{i=1}^{M+1} Q(i) r^{M+1-i}
\end{aligned}
\]
\(\frac{\text { INAF - Arcetri }}{}\)
Approximation II: Replacing the Magnet From the 3D Puck to a 6-Elements Load Spreader

Del Vecchio et al.

\(K_{p}\) (the puck axial stiffness
under a body load) is
computed via a full 3d
model
\(\hookrightarrow 3\) glue contacts, \(r=50 \mu \mathrm{~m}\)
\(\Leftarrow 3\) beams, \(K=\infty \Rightarrow\)
- 3 local \(r\) and 3 local \(\theta\) constraints

\section*{Approximation III: Replacing the Trusses What the FEM Looks Like}

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle Motivation

Statio
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation

\section*{One more approximation}
fake beams (\(I_{y y}=I_{z z}=J \approx 0\)) instead of trusses (EVEN IF A COMSOL WORK-AROUND IS AVAILABLE)
\begin{tabular}{|c|c|c|}
\hline & LBT & VLT \\
\hline shell elements & 19144 & 32824 \\
\hline beam elements & 4032 & 7020 \\
\hline dof's & \(253 \times 10^{3}\) & \(434 \times 10^{6}\) \\
\hline
\end{tabular}

Outline

AdOpt IF
Del Vecchio
1. Rationale et al.
- The AO Principle
- Motivation

2 Static assumptions and simplifications
- The model
- Local CS's
(3) Results
- LBT
- VLT
4. Experimental validation
- Set-up and procedure
- Comparison
\(\frac{\text { ANAF - Arcetri }}{\frac{A N}{\text { INE }}}\)

\section*{Respecting the DM Convexity or Concavity} Too Many Coordinate Systems Cause Comsol to Hang

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle Motivation

Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental

The global-to-local and local-to-global transformation matrices G2L and L2G \(=\mathbf{G} \mathbf{L L}^{-1}\)
\[
\begin{aligned}
& \text { G2L }=\left[\begin{array}{ccc}
\cos (\varphi) \cos (\theta) & \cos (\varphi) \sin (\theta) & \sin (\varphi) \\
-\sin (\theta) & \cos (\theta) & 0 \\
-\cos (\theta) \sin (\varphi) & -\sin (\varphi) \sin (\theta) & \cos (\varphi)
\end{array}\right] \\
& \text { L2G }=\left[\begin{array}{ccc}
\cos (\varphi) \cos (\theta) & -\sin (\theta) & -\cos (\theta) \sin (\varphi) \\
\cos (\varphi) \sin (\theta) & \cos (\theta) & -\sin (\varphi) \sin (\theta) \\
\sin (\varphi) & 0 & \cos (\varphi)
\end{array}\right]
\end{aligned}
\]

\section*{Comsol hangs up}
\(\frac{\text { INAF - Arcetri }}{\text { In }}\)

\section*{Respecting the DM Convexity or Concavity} Too Many Coordinate Systems Cause Comsol to Hang

The global-to-local and local-to-global transformation matrices G2L and L2G \(=\mathbf{G} 2 \mathbf{L}^{-1}\)
\[
\begin{aligned}
& \text { G2L }= {\left[\begin{array}{ccc}
\cos (\varphi) \cos (\theta) & \cos (\varphi) \sin (\theta) & \sin (\varphi) \\
-\sin (\theta) & \cos (\theta) & 0 \\
-\cos (\theta) \sin (\varphi) & -\sin (\varphi) \sin (\theta) & \cos (\varphi)
\end{array}\right] } \\
& \mathbf{L 2 G}=\left[\begin{array}{ccc}
\cos (\varphi) \cos (\theta) & -\sin (\theta) & -\cos (\theta) \sin (\varphi) \\
\cos (\varphi) \sin (\theta) & \cos (\theta) & -\sin (\varphi) \sin (\theta) \\
\sin (\varphi) & 0 & \cos (\varphi)
\end{array}\right] \\
& \text { BUT . . Comsol hangs up }
\end{aligned}
\]
\(\frac{\text { INAF - Arcetri }}{\text { In }}\)

\section*{Respecting the DM Convexity or Concavity}

Too Many Coordinate Systems Cause Comsol to Hang

The global-to-local and local-to-global transformation matrices G2L and L2G \(=\mathbf{G} 2 \mathbf{L}^{-1}\)
\[
\begin{aligned}
& \text { G2L }=\left[\begin{array}{ccc}
\cos (\varphi) \cos (\theta) & \cos (\varphi) \sin (\theta) & \sin (\varphi) \\
-\sin (\theta) & \cos (\theta) & 0 \\
-\cos (\theta) \sin (\varphi) & -\sin (\varphi) \sin (\theta) & \cos (\varphi)
\end{array}\right] \\
& \mathbf{L 2 G}=\left[\begin{array}{ccc}
\cos (\varphi) \cos (\theta) & -\sin (\theta) & -\cos (\theta) \sin (\varphi) \\
\cos (\varphi) \sin (\theta) & \cos (\theta) & -\sin (\varphi) \sin (\theta) \\
\sin (\varphi) & 0 & \cos (\varphi)
\end{array}\right]
\end{aligned}
\]

\section*{Comsol hangs up}
\(\frac{\text { INAF - Arcetri }}{\text { In }}\)

\section*{Respecting the DM Convexity or Concavity} Too Many Coordinate Systems Cause Comsol to Hang

The global-to-local and local-to-global transformation matrices G2L and L2G \(=\mathbf{G} 2 \mathbf{L}^{-1}\)
\[
\begin{aligned}
& \text { G2L }=\left[\begin{array}{ccc}
\cos (\varphi) \cos (\theta) & \cos (\varphi) \sin (\theta) & \sin (\varphi) \\
-\sin (\theta) & \cos (\theta) & 0 \\
-\cos (\theta) \sin (\varphi) & -\sin (\varphi) \sin (\theta) & \cos (\varphi)
\end{array}\right] \\
& \mathbf{L 2 G}=\left[\begin{array}{ccc}
\cos (\varphi) \cos (\theta) & -\sin (\theta) & -\cos (\theta) \sin (\varphi) \\
\cos (\varphi) \sin (\theta) & \cos (\theta) & -\sin (\varphi) \sin (\theta) \\
\sin (\varphi) & 0 & \cos (\varphi)
\end{array}\right]
\end{aligned}
\]

Comsol hangs up

Avoid 672 or 1170 auxiliary coordinate systems Define constraints and forces analytically (functioning)

\section*{Functioning Restraint and Force Equations I} The Coordinate Definitions

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle Motivation

Static
\begin{tabular}{|c|c|c|c|}
\hline\(P_{I}\) & \(N \times 3\) & \begin{tabular}{c}
interface nodes \\
(truss/beam intersection)
\end{tabular} & \(X_{l_{i, j},}, Y_{l_{i, j}}\) \\
\hline\(A_{l}\) & \(N \times 3\) & \begin{tabular}{c}
interface angles \\
(truss/beam intersection)
\end{tabular} & \(\psi_{j}\) \\
\hline\(P_{F}\) & \(N\) & \begin{tabular}{c}
actuation nodes \\
(beam intersections)
\end{tabular} & \(X_{F_{i}, Y_{F_{i}}} .4\) \\
\hline
\end{tabular}
\[
\begin{gathered}
i=1,2, \ldots, 3 N \\
j=1,2,3
\end{gathered}
\]
\(\psi=0, \pm(2 / 3) \pi\) for \(j=1,2,3\) are defined wrt the actuation axis

\section*{Functioning Restraint and Force Equations II} The Interpolation Function

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle Motivation

Static
assumptions
and

Matlab generation of a \(4 N \times 5\) matrix whose rows from \(i\) to \(i+4\) are defined as
\[
\left[\begin{array}{ccccc}
X_{l_{i, 1}} & Y_{l_{i, 1}} & X_{F_{i}} & Y_{F_{i}} & \psi_{1} \\
X_{i_{i, 2}} & Y_{i_{i, 2}} & X_{F_{i}} & Y_{F_{i}} & \psi_{2} \\
X_{i_{i 3}} & Y_{i_{i 3}} & X_{F_{i}} & Y_{F_{i}} & \psi_{3} \\
X_{F_{i}} & x_{F_{i}} & Y_{F_{i}}
\end{array}\right]
\]

This matrix is used as table data source of the Comsol nearest neighbor interpolation function \(\Gamma(x, y)\).
\[
\Gamma\left(\zeta_{i, j}, \eta_{i, j}\right), \text { where }\left(\zeta_{i, j}=X_{F_{i}}, \eta_{i, j}=Y_{F_{i}}\right)
\]
- associates to the \(P_{/}\)coordinates the coordinates of the correspondent \(P_{F}\)
- defines for each \(P_{I}\) the three angles \(\Theta_{i, j}=\psi_{j}\).

\section*{Functioning Restraint and Force Equations III} The Final Implementation

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle Motivation

Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental
- Defining
- \(\rho=\sqrt{\zeta^{2}+\eta^{2}}\)
- \(\theta^{\prime}=\arctan (\eta / \zeta)\)
- \(\varphi^{\prime}=\sum_{i=1}^{M+1} P^{\prime}(i) \rho^{M+1-i}\)
- Recalling
- \(\mathbf{u}=[u ; v ; w]\) displacement vector in the global cs
- Substituting in G2L
- \(\theta\) with \(\theta^{\prime}\)
- \(\varphi\) with \(\varphi^{\prime}\)
local displacement in the cs relative to each actuation axis
\[
\mathbf{u}_{I}=\left[u_{i} ; v_{l} ; w_{l}\right]=\mathbf{G u}
\]

\section*{Functioning Restraint and Force Equations IV} The Pointwise Constraints

AdOpt IF
```

Del Vecchio et al.

```

Rationale
The AO
Principle Motivation

Static
assumptions
and
simplifications
The model
Local CS's
Results
- \(N\) pointwise constraints in (1) apply the strokes to \(P_{F}\)
- 3N pointwise constraints (2) and (3) radially and tangentially (in the cylindrical local cs of each actuator) apply the constraints to \(P_{I}\)
\[
\begin{gather*}
w_{l k}= \begin{cases}0 & \text { if } k \neq i \\
w^{*} & \text { if } k=i\end{cases} \tag{1}\\
u_{l k} \cos \left(\psi_{j}\right)+v_{l k} \sin \left(\psi_{j}\right)=0 \quad j=1,2,3 \tag{2}\\
-u_{l k} \sin \left(\psi_{j}\right)+v_{l k} \cos \left(\psi_{j}\right)=0 \quad j=1,2,3 \tag{3}
\end{gather*}
\]
\(w^{*}\) displacement of the \(k\) th \((k=1,2\), N) actuator along its axis
\(\frac{\text { INAF - Arcetri }}{\text { In }}\)

\section*{Functioning Restraint and Force Equations IV} The Pointwise Constraints

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle Motivation

\section*{Static}
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure Comparison

N pointwise constraints in (1) apply the strokes to \(P_{F}\) \(3 N\) pointwise constraints (2) and (3) radially and tangentially (in the cylindrical local cs of each actuator) apply the constraints to \(P_{l}\)
\[
\begin{gather*}
w_{l_{k}}= \begin{cases}0 & \text { if } k \neq i \\
w^{*} & \text { if } k=i\end{cases} \tag{1}\\
u_{l_{k}} \cos \left(\psi_{j}\right)+v_{l_{k}} \sin \left(\psi_{j}\right)=0 \quad j=1,2,3 \tag{2}\\
-u_{l_{k}} \sin \left(\psi_{j}\right)+v_{l_{k}} \cos \left(\psi_{j}\right)=0 \quad j=1,2,3 \tag{3}
\end{gather*}
\]

Adding a small set of analytic functions allows the computation of the N IF's avoiding any additional auxiliary coordinate system

\section*{The Matlab Solving Function}

Running the Loop (without Involving the Comsol GUI)

AdOpt IF
Del Vecchio et al.

\section*{Rationale}

The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
The Matlab function
- loads the model file
- runs the IF, taking the actuator number(s) as input vector
- computes the forces and the displacements along the DM \(r, \varphi\), and \(\theta\)

The LBT Results I
The Main Diagonal of the 672 by 672 LBT DM Stiffness Matrix vs. the Actuator Geometry

\section*{AdOpt IF}

Del Vecchio
et al.
Rationale
The AO

\section*{Principle} Motivation
Static
assumptions
and
simplifications
The model Local CS's

Results
LBT
VLT
Experimental validation

\section*{The LBT Results II}

The IF \# 145

\section*{AdOpt IF}

Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure Comparison

\section*{The VLT Results I}

The Main Diagonal of the 1170 by 6721170 DM Stiffness Matrix vs. the Actuator Geometry

AdOpt IF
Del Vecchio
et al.

Rationale
The AO
Principle Motivation

Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure
Comparison

\section*{The VLT Results II}

The IF \# 377

AdOpt IF
Del Vecchio
et al.

\section*{Rationale}

The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT

\section*{Outline}

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure
Comparison
(3) Results
- LBT
- VLT
- The AO Principle
- Motivation
(2) Static assumptions and simplifications
- The model
- Local CS's
(4) Experimental validation
- Set-up and procedure
- Comparison

The Optical Test Bench The System Installed @ LBT, Arizona

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle Motivation

Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure
Comparison

\section*{The Sampling Procedure}

Getting the Deformation Map

\author{
AdOpt IF
}

Del Vecchio et al.

Rationale
The AO
Principle Motivation

Synchronization: Mirror command \& imaging

Actuator poked

Image captured

Frame rate \(=25 \mathrm{~Hz}\) to reduce noise Push-Pull to increase SNR

Analysis Procedure
Getting the Stiffness

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure
Comparison
Summary

\[
K=F / d:
\]
- Force read by the actuator current driver
- Displacement measured with the interferometer

\section*{A最 \\ Interferometric Example}

INAF - Arcetri

\section*{Typical Deformation Maps}

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure
Comparison
Summary

VLT

\section*{Outline}

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure Comparison Summary
(1) Rationale
- The AO Principle
- Motivation

2 Static assumptions and simplifications
- The model
- Local CS's
(3) Results
- LBT
- VLT
4. Experimental validation
- Set-up and procedure
- Comparison

\section*{Matching the Comsol Results}

The Concordance and the Limitations

AdOpt IF

Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure
Comparison

LBT Matching the Comsol Results
The Concordance and the Limitations

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental validation
Set-up and procedure
Comparison
Summary

VLT

\section*{Matching the Comsol Results}

\section*{The Concordance and the Limitations}

AdOpt IF
Del Vecchio et al.

\section*{Rationale}

The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental
validation
- inter-actuator force calibration
- poor image resolution
- uncertainty of the imaged actuator locations
- poor IF visibility on the edges
- effects of malfunctioning actuators

\section*{Lessons Learned \& Future Work}

\section*{Exploiting the unrestrainedness}

Although originated by a flaw of the code, functioning of a definition reveals the powerful of the flexibility of Comsol

The availability of the Matlab tools allows
- (general) geometry generation
- (compact) definition of pointwise constraints via \(\Gamma(x, y)\)
- (for loop) solving \(N\) cases

\section*{Lessons Learned \& Future Work}

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle
Motivation
Static
assumptions
and
simplifications
The model
Local CS's
Results
LBT
VLT
Experimental
validation
Set-up and procedure
Comparison
Summary

\title{
The accuracy of the results is demonstrated by the experimental data
}

\section*{Lessons Learned \& Future Work}

AdOpt IF
Del Vecchio et al.

Rationale
The AO
Principle Motivation

\section*{The powerful of functioning}

The influence functions of an Adaptive Optics Deformable Mirror can be truthfully evaluated by numerical methods.

A powerful and reliable computational tool is available for the opto-mechanical design.

\section*{For Further Reading I}

AdOpt IF
Del Vecchio et al.

Ei Biasi, R., Andrighettoni, M., Angerer, G., Mair, C., Pescoller, D., Lazzarini, P., Anaclerio, E., Mantegazza, M., Gallieni, D., Vernet, E., Arsenault, R., Madec, P.-Y., Duhoux, P., Riccardi, A., Xompero, M., Briguglio, R., Manetti, M., and Morandini, M. (2012).
VLT deformable secondary mirror: integration and electromechanical tests results.
In Ellerbroek, B. L., Marchetti, E., and Véran, J.-P., editors, Adaptive Optics Systems III, volume 8447 of Proc. SPIE. SPIE.

\section*{\(\mathrm{AR}^{2}=\) \\ For Further Reading II}

AdOpt IF
E. Riccardi, A., Xompero, M., Briguglio, R., Quirós-Pacheco, F., Busoni, L., Fini, L., Puglisi, A., Esposito, S., Arcidiacono, C., Pinna, E., Ranfagni, P., Salinari, P., Brusa, G., Demers, R., Biasi, R., and Gallieni, D. (2010).
The adaptive secondary mirror for the large binocular telescope: optical acceptance test and preliminary on-sky commissioning results.
In Ellerbroek, B. L., Hart, M., Hubin, N., and Wizinowich,
P. L., editors, Adaptive Optics Systems, volume 7736 of Proc. SPIE. SPIE.```

