

Studies on the Suitability of Indium Nitride for Terahertz Plasmonics

Authors:

Arjun Shetty¹, Prof. K. J. Vinoy¹, Prof. S. B. Krupanidhi²

¹Electrical Communication Engineering, Indian Institute of Science, Bangalore, India ²Materials Research Centre, Indian Institute of Science, Bangalore, India

Outline

- Fundamentals
 - Plasmonics: Origin
 - Electromagnetics of metals
 - Negative permittivity
 - Surface plasmon coupling
- Why THz?
 - Applications
- Why InN?
 - Permittivities of Au and InN at THz
- Simulation results
 - Structure and Boundary Conditions
 - Electric field plots

Free electron model of metals

Behaviour under applied electric field

Plasma Frequency

Material	Plasma Frequency	Wavelength
Gold (Au)	2.18 x 10 ¹⁵ Hz	200nm
Silver (Ag)	2.28 x 10 ¹⁵ Hz	180nm
Aluminium (Al)	3.57 x 10 ¹⁵ Hz	80nm
Indium Antimonide (InSb)	6.37 x 10 ¹² Hz	47µm
Indium Nitride (InN)	52 x 10 ¹² Hz	6μm

<u>Ref:</u> He Aba: Ger LoPan; S. Gwo; "Terahertz emission and spectroscopy on InN epilayer and nanostructure", Proc. SPIE 7216, Gallium Nitride Materials and Devices IV, 72160T (February 16, 2009)

Local and Surface Plasmons

Plasmonics

•Performance enhancement

✓ enhanced E-field at metal dielectric interface due to surface plasmon wave

Ref: Barnes, W. L., Dereux, A. & Ebbesen, T. W. "Surface plasmon subwavelength optics" Nature 424, 824–-830 (2003). 3rd November, 2012

Grating Coupling

$$\beta = k \sin \theta \pm v g \qquad \beta = k_0 \sqrt{\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2}}.$$
$$g = \frac{2\pi}{a}$$

Why THz? - Applications

- Imaging
 - Medical diagnostics, skin cancer, dental imaging (non-ionising alternative to x-rays)
- Sensing
 - Molecules have signature spectra in THz. Eg, Explosives, drugs
- Biomedical
 - Biological molecules have signature spectra in THz. Label free detection.
- Semiconductor
 - Materials evaluation, studying semiconductor wafers and ICs for defects. THz technology will receive a boost if it can be developed for use in semiconductor industry

* **Ref:** F. Sizov, A. Rogalski, **THz detectors**, Progress in Quantum Electronics, Volume 34, Issue 5, September 2010, Pages 278-347 (2010)

Why InN?

Simulation Results - Structure

Simulation Results – Electric Field

Simulation Results – Horizontal Cutline

3rd November, 2012

Simulation Results – Horizontal

Simulation Results – Vertical Cutline

Simulation Results – Vertical

Cutline

Conclusions

- InN has values of permittivity that are better suited for plasmonics in the THz regime
- Greater field enhancement (upto 1.4 times) in case of InN as compared to Au
- Tighter confinement of field to interface
- Greater flexibility of ω_p in case of semiconductors

