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Abstract: Non-Newtonian laminar flows in 
curved circular tubes with inserts are 
investigated by computer simulations. 0.65% 
solution of NaCMC is considered. Three-
dimensional incompressible Navier-Stokes 
equations are solved using COMSOL 
Multiphysics. Placements of inserts inside the 
curved tubes and their effects on the 
hydrodynamics of the flow are studied. 
Computations are carried out with various values 
of Reynolds number ranging from 10 to 1000. 
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1. Introduction and Governing Equations.  
 

Heat transfer processes are known to depend 
on hydrodynamic fields. Therefore, the purpose 
of this research is to study the hydrodynamic 
fields in curved channels. We consider a steady 
flow of Non-Newtonian viscous liquids in a 
curved tube. The mathematical model is 
developed taking into account a negligibly small 
gravity force. 

The steady three-dimensional Navier-Stokes 
equations are used as the governing equations: 
 
     TpI uuuu   in  

0 u  in          
 
where u=(u1,u2,u3) is the fluid velocity, p is 
pressure,   and   are viscosity and density of 
the fluid respectively. The solution domain Ω 
(Fig. 1) consists of three parts. The first part is a 
part of a straight tube of 0.015m long, L1=0.01 
m, L2=0.005 m. The second part is a curved 
region with rotation angle =90º and radius of 
the curvature R=0.075m. The third part is a part 
of the straight tube following the curved part. 
Boundary conditions: in the inlet region of the 
channel velocity field is fully developed, in the 
outlet region of the channel normal stress is 
given (the total stress on the boundary is set 
equal to a stress vector of magnitude, 0 f0   

oriented in the opposite normal direction). The 
no-slip condition is forced on the channel walls. 

We consider two geometric objects. There is 
a twisted tape insert in the curved part between B 
and F in Elbow #1 (Fig. 1). Elbow #2 has a 
twisted tape insert in the straight part of the tube 
between A and B. The tape is twisted until it 
reaches an angle of 90 degrees and turns right in 
both cases. 

 

 
Elbow #1. 

 

 
Elbow #2 

Figure 1.  Geometric objects, (A), (B),…, (G) – cross-
sections, where (С) – 30º cross-section, (D) – 45º 
cross-section, (E) – 60º cross-section. 

 
To describe the viscosity behavior we used 

the Kutateladze model [1]. It is based on the 
structural theory of viscosity and its parameters 
have physical meaning. The rheological 
properties of Carboxymethyl cellulose (0.65% 



 

NaCMC) depend on strain and do not depend on 
their previous history. 

)exp( **  ,             (3)  
where    0* /   , 

   01* /   ,   2/II 221 ; 
 21 I/1   is fluidity;  0 ,    - fluidity 

when 0  ,   respectively;   is a 
measure of the structural stability of the fluid; 1  
is yield stress; 2

2 tr4I D  is the second invariant 
of the strain rate tensor. In addition,  =0 
corresponds to a Newtonian fluid, 0  
corresponds to a dilatant fluid, 0  
corresponds to a pseudo-plastic fluid. 

The three-dimensional incompressible 
Navier-Stokes equations are solved using 
COMSOL Multiphysics. To solve linear system 
equations  we used   “Direct (PARDISO)”. In 
our computations we examined Sodium 
Carboxymethyl cellulose (0.65% NaCMC) 
(Fig. 2). This fluid is one of the widely used as a 
non-Newtonian fluid. 

 

 
Figure 2.  Dependence of dynamic viscosity (Pa·s) on 
the second invariant of the strain rate tensor (s-2) for 
Sodium Carboxymethyl cellulose (0.65% NaCMC), 
T=303K. 

 
An actual engineering problem is used to 

validate the code of COMSOL Multiphysics and 
partitioning mesh. The experimental results of 
Muguercia et al. [2] are compared with the 
simulated data obtained numerically. In these 
laboratory tests, a 180º U-tube, with the straight 
tube preceding its inlet ensures that flow is fully 
developed. The U-tube has the radius of 
curvature R = 6.35 cm and the radius of the cross 
section a=1.1 cm. Fully developed flow 
condition is simulated with Reynolds numbers of 
1000, which correspond to Dean numbers of 
416. The fluid being tested (58-60% benzyl 
alcohol in 95% ethyl alcohol) has a density of 
0.931 g/cm3 and an absolute viscosity of about 

0.03 g/cm/sec. Mesh generation starts with a 
coarse initial mesh. The volume of the mesh is 
then improved by refining the initial mesh step 
by step. The refinement process is controlled by 
calculation of the integral value of velocity at the 
cross-section (D). The refinement process is 
finished when the relative error becomes less 
than 0.001. In this case the mesh consists of 
241408 elements. The computations are 
performed on the computer Intel®  CoreTM 
i7 950 with 24Gb RAM. A comparison is 
presented in Fig. 3. 
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Figure 3.  The distribution of relative velocity at the 
cross section; a) at the entrance; b) at the 90º cross 
section; c) at the 180º cross-section; continuous line - 
numerical result; diamonds - numerical result of Guan, 
Xiaofeng [3]; triangles - experimental result of 
Muguercia [2]. 

 
2. Numerical Results 
 

Numerical computations are carried out with 
the help of COMSOL Multiphysics using 



 

Lagrange P2P1 elements over a trihedral mesh. 
The computational mesh consists of 220342 and 
220322 elements for elbow #1 and elbow #2 
respectively. The twisted tapes are designed and 
then imported from MatLab. The calculations are 
performed for   = 1012 kg/cm3 and the 
temperature 303K. On the Fig. 4 are presented 
the velocity field. 
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Figure 4.  The velocity field in various cross-sections 
of the curved channel with inserts; (а) at cross-section 
C, Elbow #1; (b) at cross-section C, Elbow #2; (c) at 
cross-section D, Elbow #1; (d) at cross-section D, 
Elbow #2; (e) at cross-section E, Elbow #1; (f) at 
cross-section E, Elbow #2; (g) at cross-section F, 
Elbow #1; (h) at cross-section F, Elbow #2; Re=1039. 

 

In the curved channel the fluid particles with 
different speeds are subjected to different effects 
of centrifugal forces. Due to these forces 
maximum speed tends to the outer wall of the 
curved tube. Numerical results show that due to 
the twisted tape inserted into the curved part of 
the channel additional inertial forces appear. 
Therefore, the fluid flow moves quicker to the 
outer walls of the channel passing throughout the 
curved part (Elbow # 1). If there is the insert in 
front of the curved part additional inertial forces 
contribute to the fact that the region with the 
maximum speed is achieved in the central part of 
the curved channel from section  C to E (Elbow 
# 1). 

The region of maximum pressure is known to 
be located on the outer wall of the curved tube 
(Fig. 5 c, f, i) and remains virtually unchanged 
throughout its length. 
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Figure 5.  Pressure distribution in various cross-
sections of the curved channel with inserts; (а) at 
cross-section C, Elbow #1; (b) at cross-section C, 
Elbow #2; (c) at cross-section C, curved channel 
without inserts [4]; (d) at cross-section D, Elbow #1; 
(e) at cross-section D, Elbow #2; (f) at cross-section 
D, curved channel without inserts [4]; (g) at cross-
section F, Elbow #1; (h) at cross-section F, Elbow #2; 
(i) at cross-section F, the curved channel without 
inserts [4]. Re=1039. 
 



 

Moreover, the maximum value itself varies 
and reaches its maximum in section D. The 
presence of inserts inside the curved tube alters 
the pressure distribution and its maximum value. 
In Elbow # 1 the region of maximum pressure is 
somewhat moved from the outer wall, but the 
maximum value is much higher than the values 
in tubes without inserts. In Elbow #2 though the 
pressure distribution is asymmetrical, in general 
it follows the distribution in the tube without 
inserts. It should be emphasized that maximum 
pressure in this case is lower than corresponding 
values in tubes without inserts (for example, in 
section D, a decrease of the maximum pressure 
on the outer wall reaches 8%). 

In Fig.6 the pressure distribution on the wall 
of the channel is shown. Two areas with high 
pressure in elbow #1 can be clearly seen. Using 
this twisted tape in the curved channel (as elbow 
#2) makes it possible to reduce pressure and 
decrease the area with high pressure on the outer 
wall. 
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Figure 6.  Pressure distribution on the walls; (a) 
Elbow #1;  (b) Elbow #2; (c) the curved tube without 
insert; Re=1039. 

 
The relation between presence of the insert in the 

curved tube and the hydraulic resistance coefficient is 
shown in Fig.7. Postprocessing of the obtained results 
showed that, due to the insert in the curved tube, as 
considered in Fig. 1, the hydraulic resistance 
coefficient increases. For example, G  for elbow #2 is 

220% more than BF for the curved tube without 
insert for Re=1039. Using the twisted tape directly 
before the curved region is helpful for steeply curved 
channels because the area of high velocity moves 
towards the center of the curved channel. 

 

 
Figure 7 (a) 

 
Figure 7 (b) 

 
Figure 7.  Hydraulic resistance coefficient as a 
function of Reynolds number; Ghydraulic 
resistance coefficient between cross-sections 
(Entrance) and (G); BF – hydraulic resistance 
coefficient between cross-sections (B) and (F) (Fig. 1). 
 
3. Conclusions 
 

Laminar flow in the curved channels with 
different placements of inserts is considered. For 
elbow #2 the most part of high velocity area is 
located in the center of the channel throughout 
its length. The twisted tape before the curved 
channel considered for elbow#2 reduces the 
pressure on the outer wall and consequently 
reduces the force on the pipe wall and increases 
its longevity. The calculated hydrodynamic 
parameters can be further used to calculate heat 
and mass transfer. 
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