

Two-Scale Modeling of the WAAM Process: Link Between Thermo-Hydrodynamics and Solid Mechanics

Predict distortions/residual stresses induced by wire-arc additive manufacturing process (MAG-CMT) based on process parameters

C. Le Falher^{1,2,3}, S. Cadiou³, S. Morville¹, M. Courtois³, P. Paillard², P. Le Masson³ 1. Nantes Université, Nantes, France

2. Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes, France

3. Univ. Bretagne Sud, UMR CNRS 6027, IRDL, Lorient, France

Introduction and Goals

WAAM: manufacturing parts by molten metal deposition induce distortions/residual stresses

Numerical modelling: predict distortions/residual stresses of a part build of 316L stainless steel only based on process parameters (**no volume heat source**)

Results – Part Scale

melt pool scale

A 338

Multiscale Modeling with Scale Transition

 \rightarrow

Results – Melt Pool Scale

REFERENCES

[1] - Lemaitre, J. and Chaboche, J.-L. (1994). Mechanics of solid materials. Cambridge university press.
[2] - Cambon, C. (2021). Étude thermomécanique du procédé de fabrication métallique arc-fil : approche numérique et expérimentale. PhD Thesis, Université de Montpellier.

Excerpt from the Proceedings of the COMSOL Conference 2023 Munich