

Electrochemomechanical simulations of 3D-resolved solidstate lithium-ion battery cells

Giulia Blanco

Munich, 25th October 2023

Gemmate Technologies

Buttigliera Alta (Turin), Italy

www.gemmate-technologies.com

13 EU grants

Outline

- 1. Introduction
- 2. Simulation set up and model comparison
- 3. Microstructure and mechanical properties
- 4. Cell performances evaluation
- 5. Conclusion

Introduction

• WHAT? 3D microstructure-resolved electrochemo-mechanical model of high fidelity

• WHY? Li-B affected by microstructural heterogeneities and mechanical interaction

• HOW?

Comparison between models to assess the better performance representation

Optimize design at the microstructure level

Simulation setup

The cell is reconstruct considering:

- Experimental parameters
- Volume fraction
- Particle size distribution

Configuration comparison

Novel configuration

Standard configuration

Microstructure properties

Novel configuration

Standard configuration

The transport properties corrected whit CB volume fraction

Conductivity Domain: NMC-Porous Electrolyte

Tortuosity Domain:

Porous Electrolyte

Electrical conductivity

Conductivity Domain: NMC-CB network

Tortuosity Domain: Homogenous Electrolyte

Mechanical interaction

The volumetric deformation due to the Li intercalation generates a field of stresses

The gradient of the stress field facilitates Li transport

Mechanical interaction affect the electrochemical behavior:

1. Modifying the equilibrium potentials

$$V = V_0 + \frac{\Omega \sigma_h}{F}$$

Local hydrostatic stress σ_h

Partial molar volume $\,\varOmega\,$

2. Introducing a convective term in the transport equation

$$\frac{\partial c}{\partial t} + \nabla \cdot (-D\nabla c + \beta c) = 0 \quad \longrightarrow \quad \beta = \frac{D\Omega(c)}{RT} \nabla \sigma_h$$

convection coefficient

Solver setup

Simulation results

How the different assumptions affect cell performance?

- Tortuosity and electrical conductivity
- Electrochemical potential and charge transfer
- State of lithiation and Li-ion transport
- Overpotential
- Mechanical stresses

Microstructure results

Novel configuration

Standard configuration

Tortuosity: 1.53

Low affected by CB aggregates

Theoretical value of Bruggeman theory

Electrical conductivity : 1.4 S/cm

Tortuosity: 3.98

Mostly affected by NMC overlap

Electrical conductivity : 33.0 S/cm

Experimental values of similar electrodes

Results closer to real cells with proposed approach

State of lithiation and Li-ion transport

Overpotential

gemmate

The stress at the particle surface modifies the overpotential

Higher concentration gradients within the NMC particles

High values of overpotential

Lower concentration gradients within the NMC particles

Low values of overpotential

Tends to limit the losses due to concentration polarization

Von Mises Stresses

Conclusion

Comparison between Solid-state Li-ion battery

Balancing accuracy and simplicity the proposed approach provide a more accurate model 3D microstructural-resolved electrochemo-mechanical model **Microstructure heterogeneities Electrochemo-mechanical interaction** Lithium transport Particle utilisation State of lithiation Stresses distribution Charge transfer **Overpotential**

Giulia Blanco

giulia.blanco@gemmate-techonolgies.com

Back up simulation setup

A portion of the cell is reconstruct considering shape and size distribution of particles and volume fraction;

Spherical NMC active material particles size: $2 \ \mu m \le R_{NMC} \le 11 \ \mu m$ vol. frac.: 49 %

Spherical Carbon black conductive material particles size: $0.25 \ \mu m \le R_{CB} \le 0.75 \ \mu m$ vol. frac.: 5 %

```
Homogenous Solid Electrolyte Li_6PS_5Cl vol. frac.: 46 %
```


Back up Microstructure properties

Electrode conductivity :

- Coefficient form PDE in electron-conducing domains
- Dirichlet B.C. of ΔV=1

Electrical conductivity

- Current density Cathode thickness
- → Electric differential in potential

Configuration with explicit CB aggregates

Electrolyte tortuosity :

- Laplace equation in electrolyte domain
- Dirichlet B.C. of $\Delta c=1$
- $\tau \phi$
-) Electrolyte volume fraction
- >----> Normalized stationary species flux

Configuration with CB homogeneously dispersed

The transport properties corrected whit CB volume fraction φ_{CB} : 0.0481

Electron-conducing domains: NMC-CB Electrical Conductivity: NMC: 0.17 S/m CB: 100 S/cm

Diffusion coefficient: 1

Electron-conducing domains: NMC-SE Electrical Conductivity: NMC: 0.17 S/m SE: $100^*(1 - \phi_{CB})^{3/2}$ S/cm Diffusion coefficient: $1 - \phi_{CB}$

Back up Assumption

 $\sigma_h = -(\sigma_x + \sigma_y + \sigma_z)/3$

- The sign of σ_h is reversed respect the conventional definition
- The electrolyte do not exert a compressive stress to shrink the NMC surface
- But the electrolyte counteract the particle shrinkage so the this should be in traction

 $\frac{\partial c}{\partial t} + \nabla \cdot \left(-\frac{D}{D} \nabla c + \boldsymbol{\beta} c \right) = 0,$

- Coherently with literature references $D = 4.2 \cdot 10^{-15} \text{ m}^2/\text{s}$
- Two orders of magnitude lower than *D* of material library

Charge transfer

