Simulations of Microelectrode and Neuron Interfaces Enable Long-Term and High Fidelity Recordings

P. Wijdenes [1], H. Ali [2], N. Syed [3], C. Dalton [2],
[1] Centre for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada
[2] Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
[3] Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
Published in 2016

Our inability to record single cell activity with high resolution over a long period of time precludes fundamental understanding of nervous system functions, both under normal and pathological conditions. While the fabrication of current micro- and nano-electrodes has advanced our capabilities to perform long-term recordings, this has been at the expense of signal resolution due to low sealing resistance, which is defined as the resistance that restricts current leakage through the gap between a neuron and the electrode. Here we report simulations of a novel microelectrode design fabricated in our lab with nano-edges that permits long-term (≥ 1 month) and high fidelity recordings. These new microelectrodes offer more opportunities than traditional planar electrodes and will enable better understanding of brain function and pathological neural conditions.