The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Semibatch Polymerization

As reactant monomer converts into polymer chains, the density of the reacting mixture often changes notably. In this example you will look at how this effect impacts the total production of polymer in a process. The liquid phase polymerization takes place in a semibatch reactor, where two operating conditions are compared. In the first scenario, the feed of monomer to the reactor is turned off ...

Quarter-Wave Transformer

Transmission lines are used when the frequency of the electromagnetic signals is so high that the wave nature of the signals must be taken into account. A consequence of the wave nature is that the signals are reflected if there are abrupt changes of the characteristic impedance along the transmission line. Similarly, the load impedance, Z(L), at the end of the transmission line must match its ...

Kirsch Infinite Plate Problem

This model describes a static stress analysis to obtain the stress distribution in the vicinity of a small hole in an infinite plate. The model is a classic benchmark and is described in Mechanics of Material, by D. Roylance. The stress level is then compared with the theoretical values.

Modeling of an Enzyme-Based Biofuel Cell Anode

Enzyme-based biofuel cells (EBFCs) use biomass and specific enzymes known as biocatalysts in order to convert chemical energy into electrical energy. At the anode of an EBFC, the biomass (substrate) is oxidized to produce protons and electrons. Mediators are used in the anode to shuttle the electrons from enzymes to electrodes. At the cathode, the oxidant (oxygen) reacts with the protons and ...

Magnetic Frill

Feeding antennas with proper signals can be difficult. The signal is often described as a voltage, and voltages are not well defined in electromagnetic wave formulations. There are several tricks to model voltage generators in such situations, and one is the magnetic frill. This model shows the basic steps of defining a magnetic frill voltage generator for a dipole antenna, and it also ...

Determining the Reaction Order from Pressure-Time Data

This model shows how to use the Parameter Estimation feature in the Reaction Engineering interface to find the rate constant and reaction order for the gas phase decomposition of di-tert-butyl-peroxide.

Electrodeposition on a Resistive Patterned Wafer

This example models time-dependent copper deposition on a resistive wafer in a cupplater reactor. As the deposited layer builds up, the resistive losses of the deposited layer decreases. The benefit of using a current thief for a more uniform deposit is demonstrated.

1D Lithium-Ion Battery Model for Power vs Energy Evaluation

A battery’s possible energy and power outputs are crucial to consider when deciding in which type of device it can be used. A cell with high rate capability is able to generate a considerable amount of power, that is, it suffers from little polarization (voltage loss) even at high current loads. In contrast, a low rate-capability cell has the opposite behavior. The former type is often denoted ...

Microresistor Beam

Microresistors allow for quick and accurate actuation or structural movement directly related to the electricity that is applied to them. Microresistors can be used in many applications where small perturbations or deflections are required to be applied to devices, almost instantaneously. The Microresistor Beam app illustrates the importance of fully coupled, multiphysics simulations. An ...

Radome with Double-layered Dielectric Lens

A radome minimizes losses and improves radiation characteristics of an antenna through its design. The structure can be optimized to minimize the transmission loss and also designed to improve radiation characteristics including antenna directivity and side lobes. Shown in the model is the surface current density on the patch antenna, the magnitude of the electric potential on the antenna's ...