The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Porous Absorber

This is a model of acoustic absorption by a porous acoustic open cell foam. In porous materials the sound propagates in a network of small interconnected pores. Because the dimensions of the pores are small, losses occur due to thermal conduction and viscous friction. Acoustic foams are used to sound proof rooms and ducts as well as to treat reverberation problems in rooms. The aim of the model ...

Acoustic Reflections off a Water-Sediment Interface

This model determines the reflection coefficient of plane acoustic waves, at different frequencies and at different angles of incidence, off a water-sediment interface. The ability of the Poroelasitc Waves interface to model the coupled acoustic and elastic wave in any porous substance (Biot's theory) is used to describe the water-sediment system. The model results are in good agreement with ...

Absorptive Muffler

The sound level from a car depends to a great extent of the quality of the muffler. Over the years, researchers in the car industry have struggled to produce mufflers that are efficient from both an acoustic and an environmental perspective. This model describes the pressure wave propagation in a muffler for an internal combustion engine. The model also shows how to analyze both inductive and ...

Focused Ultrasound Induced Heating in Tissue Phantom

This model example shows how to model tissue heating induced by focused ultrasound. First, the stationary acoustic field in the water and the tissue are modeled to obtain the acoustic intensity distribution in the tissue. The absorbed acoustic energy is then calculated and used as the heat source for a Bioheat Transfer physics in the tissue domain in a time-dependent study simulating the ...

Acoustic Levitator

An ultrasonic standing wave levitator, also called acoustic levitator, is a device used for levitating fluid and solid particles in an acoustic field. The standing acoustic waves exert an acoustic radiation force on the particles. The force is a second order effect and stems from a combination of the time averaged pressure and inertial interaction between the particles and the acoustic field. ...

The Brüel & Kjær 4134 Condenser Microphone

This is a model of the Brüel and Kjær 4134 condenser microphone. The geometry and material parameters are those of the actual microphone. The modeled sensitivity level is compared to measurements performed on an actual microphone and shows good agreement. The membrane deformation, pressure, velocity, and electric field are also determined. The model is a true multiphysics problem that ...

Vibrating Plate in a 2D Viscous Parallel Plate Flow

This is a small 2D demonstration model that couples the linearized Navier-Stokes Frequency Domain, the Solid Mechanics, and the Creeping Flow physics interfaces to model the vibrations of a plate located in a 2D viscous parallel plate flow. This type of model is used to model fluid structure interaction (FSI) in the frequency domain. For simplicity the flow is assumed to be a Creeping flow. ...

Sonic Well Logging

This model demonstrates how to simulate a piezoelectric transducer as both a sound transmitter and a receiver in a well logging setup. Other applications of this setup are, for example, in the field of nondestructive testing. A transmitting transducer is connected to an electrical circuit which is set up to send out a pulse as a detecting signal and also pick up the signals that come back to the ...

Loudspeaker Driver in a Vented Enclosure

This model of a boxed loudspeaker lets you apply a nominal driving voltage and extract the resulting sound pressure level in the outside room as a function of the frequency. The sensitivity, both on-axis and spatial, is determined as function of frequency. These are some of the most important design parameters for a loudspeaker. The electromagnetic properties of the driver are supplied from the ...

Sedan Interior Acoustics

This is a model of the acoustics inside a sedan, that is inside a typical hard-top family car. The model sets up sources at loudspeaker locations as well as impedance conditions to model soft absorbing surfaces (seats and carpet). The model results in plots of the pressure, sound pressure level, and intensity inside the car. The frequency response at given points inside the cabin are also ...