## Happy Birthday, Emmy Noether

##### Emily Ediger March 23, 2019

Emmy Noether, one of the leading mathematicians of her time, made vital contributions to theoretical physics and abstract algebra. Her first theorem connected mathematics and physics, showing the link between symmetry in nature and the universal laws of conservation. Noether is remembered for her exceptional skills and contributions to mathematics.

### Protecting Against Atmospheric Corrosion with Simulation

##### Thomas Forrister March 21, 2019

If you’ve ever lived in a humid area, you’re probably familiar with a phenomenon known as atmospheric corrosion — a common result of which is everyday rust. This type of metal corrosion happens frequently enough that professionals in construction and manufacturing regularly use some form of corrosion protection, even if it’s simply applying a coating to the metal. To efficiently analyze the corrosion process and optimize prevention techniques, engineers can use the COMSOL Multiphysics® software.

### Modeling Fluid-Structure Interaction in Multibody Mechanisms

##### Soumya SS March 20, 2019

Simulating the interaction of a multibody mechanism with surrounding fluid is often an interesting but challenging task for many design engineers. The COMSOL® software provides an easy solution for this problem with the Fluid-Structure Interaction, Pair multiphysics coupling, available as of version 5.4. In this blog post, we discuss the Fluid-Structure Interaction, Pair multiphysics coupling in detail along with an interesting example.

### Evaluating the Necking of an Elastoplastic Metal Bar Benchmark Model

##### Thomas Forrister March 18, 2019

When performing a tensile test on a specimen with a certain geometry and a ductile material, a phenomenon called necking can occur. At a certain load, the deformation is no longer homogeneous, and a localized “neck” develops. Engineers can use simulation to predict when it will occur. In a benchmark model illustrating the necking of an elastoplastic metal bar, the COMSOL® software is used to solve the numerical model, the results of which have been validated by published research.

### How to Model Different Types of Damping in COMSOL Multiphysics®

##### Henrik Sönnerlind March 15, 2019

In a previous blog post, we introduced various physical phenomena that cause damping in structures and showed how such damping can be represented mathematically. Today, we follow up by looking at how to actually include damping in finite element models.

### Damping in Structural Dynamics: Theory and Sources

##### Henrik Sönnerlind March 14, 2019

If you strike a bowl made of glass or metal, you hear a tone with an intensity that decays with time. In a world without damping, the tone would linger forever. In reality, there are several physical processes through which the kinetic and elastic energy in the bowl dissipate into other energy forms. In this blog post, we will discuss how damping can be represented, and the physical phenomena that cause damping in vibrating structures.

### Happy Birthday, Sir William Henry Perkin

##### Brianne Christopher March 12, 2019

What did you want to do with your life at the age of 18? Sir William Henry Perkin was trying to produce a treatment for malaria by synthesizing quinine. Instead, his experiments led him to produce the first synthetic dye of the color we now know as mauve. Let’s learn more about the British chemist responsible for adding more color to our world…

### Veryst Combines Material Testing and Simulation for Reliable Results

##### Fanny Griesmer March 11, 2019

Success in today’s marketplace comes down to both developing reliable products that work as intended and launching them at the right time. Like many other companies out there, Veryst Engineering has found that simulation is an effective tool for looking inside a product and ensuring that the design meets specifications prior to prototyping or manufacturing. For this to work, simulations have to match real-world responses, and understanding material behavior plays a central role. However, not all materials behave predictably.

### Performing a Multiphysics Analysis of a Thermal Microactuator

##### Bridget Paulus March 8, 2019

Small, powerful, and efficient, thermal actuators are a good choice for devices such as thermostats and MEMS. This type of actuator heats up via an applied voltage and deforms in such a way that it “actuates” another component. Thermal actuators involve tightly coupled electrical, thermal, and structural phenomena that affect device performance and must be accounted for. Using the COMSOL® software, you can gain insight into these multiphysics interactions and optimize thermal actuator designs.

### Reducing the Magnetic Signature of a Submarine

##### Lipeng Liu March 7, 2019

Ships and submarines can be detected by enemy defense systems due to their magnetic signatures. Therefore, numerical analysis of the magnetic signature is of great importance in the design and operation of such vessels. However, the sheet metal used for construction is thin compared to the dimensions of the vessel, which makes the standard finite element approach with volume meshing inefficient. This blog post discusses a way to speed up the computation using a simple submarine example.

### How Eddy Current Braking Technology Is Freeing Us from Friction

##### Thomas Forrister March 6, 2019

Nowadays, the need for travel is growing — and with it, transportation alternatives that are greener; less noisy; and, of course, faster. But what moves must eventually stop, and while most planes, trains, and automobiles use mechanical braking, this type of braking can cause damage and become unsafe at high speeds. Not so with eddy current braking. Here, we investigate the potential for this type of frictionless braking and the phenomenon behind this effect.