Evaluating a Schottky Diode with a Semiconductor Benchmark Model

Bridget Paulus September 10, 2018

Schottky diodes are one of the oldest semiconductor components, but they are still found in many modern applications, including computers and radar systems. To ensure that a Schottky diode performs well, it’s important for engineers to accurately analyze factors like current density and barrier height in the design. As a benchmark model demonstrates, the COMSOL Multiphysics® software and add-on Semiconductor Module are well suited for this type of analysis.

Read More

Caty Fairclough August 9, 2018

Electrically erasable programmable read-only memory (EEPROM) is a type of nonvolatile memory that enables users to repeatedly store and erase small amounts of data by applying a voltage pulse. EEPROM is often used as a storage medium in computers and mobile devices and has applications in devices like microcontrollers. To analyze the designs of EEPROM devices, engineers can turn to semiconductor simulation.

Read More

Brianne Costa July 2, 2018

What do beer fermentation, soil analysis, and the production of dairy products have in common? They all involve the use of ion-sensitive field-effect transistors (ISFETs) for pH measurement. These sensors are small, efficient, and durable, which makes them suitable for food, environmental, and biomedical applications. However, ISFETs can experience drift and are sensitive to different temperatures, which limits their accuracy and stability. Using the COMSOL® software, engineers can accurately analyze ISFET designs and improve their performance.

Read More

Caty Fairclough June 20, 2018

Silicon planar devices, imaging sensors, and microprocessors often include a metal-oxide-silicon (MOS) capacitor. To ensure that these devices perform as expected in an application, engineers can accurately analyze their designs using simulation. With the Semiconductor Module, an add-on product to the COMSOL Multiphysics® software, there are multiple methods to do just that…

Read More

Brianne Costa August 30, 2017

“I think I can safely say that nobody understands quantum mechanics.” — Richard Feynman, in The Character of Physical Law (1965). Although the Nobel-prize-winning physicist might have been speaking in jest, quantum mechanics is a difficult concept to teach — and simulate. Modeling a double-barrier structure in the COMSOL Multiphysics® software can help teach quantum mechanics concepts to physics students as well as enhance the research and development of semiconductor devices.

Read More

Chien Liu May 31, 2017

You can use the new Schrödinger Equation interface for modeling with the Semiconductor Module in the latest release of the COMSOL® software. Let’s look at a simple example app that uses this interface to estimate the electron and hole ground state energy levels for a superlattice structure. By building apps like this one, device engineers are able to calculate the band gap for a given periodic structure and adjust the design parameters until a desired band gap value is achieved.

Read More

Caty Fairclough April 27, 2017

When analyzing semiconductor devices, it is important to account for the multiple physics affecting their performance. The Semiconductor Module — an add-on product to the COMSOL Multiphysics® software — can help you model these complex devices. In this blog post, we discuss a new tutorial model of a 1D silicon solar cell, which is available with the latest release of the COMSOL® software, version 5.3.

Read More

Bridget Cunningham December 16, 2016

In rapid thermal annealing, a process step in producing semiconductors, measuring the temperature of a wafer is key. Without accurate measurements, overheating and nonuniform temperature distributions may occur, both of which impact the effectiveness of the process. This is why tools like the COMSOL Multiphysics® software give you the ability to analyze temperature distributions within an RTA design. From these results, you can better assess the performance of the sensor component and optimize its configuration to achieve accurate measurements.

Read More

Caty Fairclough April 7, 2016

When it comes to creating the next generation of flat panel displays and solid-state area lighting, organic light-emitting diodes, or OLEDs, may be used to help. While recognized for its various advantages, this emerging technology suffers from some weaknesses that reduce its overall efficiency. One such example is light loss, which is partially caused by the plasmon coupling effect. Looking to reduce the effect’s prominence in OLED devices, researchers from Konica Minolta Laboratory turned to the COMSOL Multiphysics® software.

Read More

Daniel Smith January 14, 2016

I love my Philips Hue lighting system, which I bought over a year ago. The system allows you to set millions of different colors and thousands of brightness levels for up to 18 bulbs using a smartphone. You can also program the system to automatically turn on as you approach your residence, known as geofencing, or at specific times of the day. But how does the light quality compare to that of other lighting technologies?

Read More

Matt Pooley May 18, 2015

Thanks to the Semiconductor Module and the Application Builder, developing custom optoelectronic simulation apps has never been easier. In this blog post, we show you how to turn a model of an LED device into a user-friendly application that can be used to assess the impact of different designs on the LED’s emission characteristics and performance. We also demonstrate the use of custom methods to manipulate the solution data, enabling the easy creation of bespoke analysis tools.

Read More


Categories


Tags

1 2