Keynote Video: Modeling the Multiphysics Behavior of Nuclear Fuel

Bridget Paulus November 6, 2017

Optimizing fuel for nuclear reactors can increase the amount of power they generate, improve their safety, and lower greenhouse gas emissions. However, studying nuclear fuel can be complex, as it involves interactions between multiple physical phenomena. In his keynote talk from the COMSOL Conference 2017 Boston, Andrew Prudil of Canadian Nuclear Laboratories (CNL) discussed using multiphysics models to gain insight into nuclear fuel. If you missed his presentation, find a video recording and summary below.

Read More

Mats Danielsson November 2, 2017

In structural mechanics, there may be situations when you want to implement your own material model. The COMSOL Multiphysics® software gives you the option to program your own material model in C code. The compiled code can then be called from the program using the External Material feature. Here, we demonstrate how to implement an external material model and then use it in an example analysis.

Read More

Caty Fairclough November 1, 2017

You’re listening to music when you bump into your loudspeaker, knocking it off the table. Fortunately, it still works! In his keynote presentation at the COMSOL Conference 2017 Boston, Richard Little discussed how Sonos, Inc. ensures that loudspeakers are durable enough to withstand certain stresses and how they use simulation to improve the robustness of the transducer component. If you missed his talk, you can watch the video recording below, followed by a quick summary of his presentation.

Read More

Brianne Costa October 31, 2017

My favorite novel to read around the Halloween season is Stephen King’s It. A common misconception about the book is that “It” is just a scary clown — It is actually the embodiment of whatever you fear most. If what scares you the most is the possibility of ghosts, don’t worry: a researcher used acoustics analysis to explain that whatever scares you this Halloween, like It, is just a trick of the mind (and vibroacoustic effects…)

Read More

Fanny Griesmer October 26, 2017

Important question: If you pour hot coffee into a vacuum flask, how long will it stay warm? There are two different modeling approaches for studying this scenario, but the more accurate method is also more computationally expensive. Let’s see what they are and when they are appropriate — and hopefully find an answer to the question.

Read More

Mats Danielsson October 11, 2017

The trebuchet is a large siege weapon that you might recognize from movies set in the Middle Ages or fantasy worlds. This weapon is built on the idea of converting potential energy into kinetic energy to hurl a projectile over a large distance. Simple as it seems, the trebuchet is a complicated dynamical system. In this blog post, we will build a simplified model of a counterweight trebuchet using the Multibody Dynamics Module and examine some of its design features.

Read More

Caty Fairclough October 4, 2017

Kelvin probes provide a nondestructive and contact-free method of measuring the work function differences of various material combinations. These probes can have a variety of designs, including different tip shapes, lengths, and radii. To find an optimal design while minimizing the need for extensive testing, one group of researchers used the COMSOL Multiphysics® software. Here’s what they found…

Read More

Guest Linus Fagerberg October 3, 2017

Guest blogger Linus Fagerberg from Lightness by Design picks up where he left off in his previous blog post to discuss how radiated sound depends on the shell thickness of a muffler. Here, we discuss different entities for gauging the performance of mufflers. One important parameter is the thickness of the muffler’s casing and how this affects its performance. By performing acoustic-structure interaction simulations, we can see how shell thickness affects muffler performance.

Read More

Bridget Paulus September 18, 2017

Maintaining an even temperature for buildings in hot climates often requires a lot of energy. One option for improving thermal performance is by including phase change materials (PCMs) in parts of the building. To study the effectiveness of PCMs in regulating temperature, researchers used the COMSOL Multiphysics® software to model a novel plaster that includes a PCM. They then analyzed the thermal performance of the PCM-enhanced plaster and compared the results with a reference plaster.

Read More

Guest Linus Fagerberg September 14, 2017

Guest blogger Linus Fagerberg from Lightness by Design returns to share a novel approach for predicting external noise generation in muffler designs. In recent years, the European Union has introduced stricter noise emission limits for road vehicles. For those designing mufflers, these limits make it important to create more efficient ways of developing and assessing the performance of their designs. At Lightness by Design, we’ve developed a novel approach that accomplishes this goal.

Read More

Guest Thomas Clavet August 31, 2017

Today, guest blogger Thomas Clavet of EMC3 Consulting, a COMSOL Certified Consultant, discusses simulating phased array and geometrically focused probes. Ultrasound focusing is widely used in various industrial applications, such as nondestructive testing (NDT) and medical imaging. For clinical applications, high-intensity focused ultrasound (HIFU) is a specific aspect of this technology where most of the power provided by the probe is carried to a targeted zone to coagulate biological tissues. This blog post discusses ultrasound focusing simulation.

Read More



1 4 5 6 7 8 38