Design Safe Wearable Technology with Heat Transfer Modeling

Brianne Costa | February 1, 2016

Year by year, wearable technology grows in popularity for both consumer and medical applications. These devices are meant for continued use, but the heat that they produce could lead to malfunction and burns if not properly designed. To prevent injury to the device user, it’s important to take the effects of heat transfer into account during the design process. The simulation capabilities of COMSOL Multiphysics make this possible.


Nikola Strah | January 25, 2016

Surely you remember the last time you were stuck in bed with the flu. Influenza, commonly known as the flu, can be at the very least an unpleasant experience, but it also claims a lot of casualties every year. Today, public health officials use mathematical modeling techniques to study the flu and other infectious diseases to predict their spread and make informed decisions about public health.


Walter Frei | January 20, 2016

Radiofrequency tissue ablation is a medical procedure that uses targeted heat for a variety of medical purposes, including killing cancerous cells, shrinking collagen, and alleviating pain. The process involves applying mid- to high-frequency alternating current directly to the tissue, raising the temperature in a focused region near the applicator. We can simulate this process with COMSOL Multiphysics and the AC/DC and Heat Transfer modules. In today’s blog post, we will go over some key concepts for modeling this procedure.


Nancy Bannach | January 12, 2016

Modeling complex geometries with thin structures can be very costly in terms of computational effort, particularly as such structures require quite a lot of mesh elements in order to resolve them. COMSOL Multiphysics provides dedicated features for modeling thin structures so that such models can be solved efficiently while maintaining accuracy. To set up and postprocess thin structures, COMSOL Multiphysics also provides specialized operators to help you consider all the relevant parameters required for accurate results.


Caty Fairclough | January 4, 2016

Studying fish locomotion enables researchers to design vehicles and robots that can skillfully navigate aquatic environments. Performing such studies requires fluid-structure interaction (FSI) analyses of the fish and their environments. Using COMSOL Multiphysics, researchers from the Università Roma Tre were able to simulate carangiform swimming, a type of fish movement, and accurately evaluate its dynamics.


Bridget Cunningham | December 30, 2015

Mufflers are used for acoustic soundproofing in combustion engines and HVAC systems. Before achieving optimal performance, a muffler design can go through several iterations. COMSOL Multiphysics provides a flexible environment for testing different designs, saving time and costs while ensuring high performance. Now, with simulation apps, each modification no longer requires the help of a simulation expert. Instead, colleagues can run their own tests and deliver faster results to customers. Our Absorptive Muffler Designer demo app offers insight.


Mads Herring Jensen | January 21, 2016

COMSOL Multiphysics version 5.2 introduced a number of new features and functionality, including an acoustics-specific plot type called the Octave Band plot. This plot type provides you with an easy and flexible way to represent any frequency response, transfer function, sensitivity curve, transmission loss, or insertion loss — all of which are essential plots in many acoustics applications. Let’s learn a bit more about the Octave Band plot, while highlighting its various options and settings.


Categories

Giuseppe Petrone | January 18, 2016

Today, guest blogger and Certified Consultant Giuseppe Petrone of BE CAE & Test discusses creating apps to perform thermal analyses of electronic devices. When manufacturing electronic devices, leading companies often look to simulation in order to thermally characterize their products. At BE CAE & Test, we have found a more efficient way of answering such requests: designing apps that are tailored to our customers’ needs. Our surface-mount device app, presented here, is just one testament to what apps can achieve.


Brianne Costa | January 6, 2016

Contaminated produce contributes to food waste — a growing problem in the global agricultural industry. Solar dryers are one way to preserve fruits and vegetables, but these devices must be able to function properly to be effective. Heat transfer simulation can be used to analyze solar food dryer designs and identify the right building materials, including phase-change materials (PCMs), which conserve the solar heat. Today, we’ll explore simulation research focused on optimizing a solar dryer design for efficient food preservation.


Shruti Thiagarajan | December 31, 2015

Say you’re riding a bicycle and someone gives you a push from the side. To quickly stabilize yourself, you turn the handlebar of the bicycle in the same direction to counteract the fall. While riders do this instinctively, what’s fascinating is that our bicycles can do the same thing. Modern bicycles are designed to be self stable; they’re good at keeping balance while moving uncontrolled. Let’s take a look at how we can simulate this effect in COMSOL Multiphysics.


Aditi Karandikar | December 23, 2015

3D printing, also known as additive manufacturing, has been a popular topic of discussion on the COMSOL Blog and throughout the scientific community. New initiatives have furthered the capabilities of this technology, while extending its reach in various fields of research, manufacturing, and design. With the help of COMSOL Multiphysics, researchers at the Netherlands Organization for Applied Scientific Research (TNO) are investigating the promise of 3D printing in the realm of material design.


1 2 3 4 5 24