Studying the Peltier and Seebeck Effects in Thermoelectric Devices

Thomas Forrister September 20, 2018

After a pleasant day at the beach, you open your car door. It’s warm inside the vehicle, but it’s nothing a little air conditioning can’t fix. Then you sit down. The seat is burning hot, making for an uncomfortable ride home. Fortunately, there’s a way to avoid this scenario: Engineers can use thermoelectric devices that leverage the Seebeck and Peltier effects to control the temperature of car seats (among other applications).

Read More

Siva Sashank Tholeti August 22, 2018

Sparging, a mass transfer process between a gas and a liquid, is commonly encountered in industrial applications such as beverage carbonation and photobioreactors, or even at home for aeration in aquariums. In this blog post, we detail how to model a type of sparging, carbonation, using the COMSOL Multiphysics® software.

Read More

Mats Nigam August 20, 2018

When setting up fluid flow simulations, we typically focus on a single (possibly a few) components in a larger system, such as a pump or sedimentation tank in a water treatment plant. Naturally, this raises a question: At what distance can we apply boundary conditions without interfering with the process? In this blog post, we look at the effects of the proximity of inlet and outlet boundaries for interior and exterior flows of a homogeneous fluid with negligible compressibility.

Read More

Bridget Paulus August 6, 2018

Efficient, cost effective, and environmentally friendly, friction stir welding (FSW) is useful for many applications. As the name implies, this process involves using friction to heat materials and then stirring them together. For optimal FSW performance, the generated heat has to be just the right temperature: Too high and the materials melt, weakening the weld; too little and the process is inefficient. Using the COMSOL® software, you can evaluate and improve heat transfer in the FSW process.

Read More

Brianne Costa July 31, 2018

The Oldroyd-B numerical model defines flow in fluids that exhibit complex viscoelastic behavior under strain, such as clay, toothpaste, oil, and polymer solutions. In a benchmark model of an Oldroyd-B fluid, the COMSOL Multiphysics® software and add-on CFD Module are used to solve the numerical model, the results of which have been validated by published research.

Read More

Bridget Paulus July 30, 2018

From home HVAC systems to spacecraft ejectors, diffusers find use in all kinds of applications. For example, diffusers are often used in supersonic aircraft like ramjets to slow down fluid flow and increase static pressure. To design transonic diffusers for supersonic applications, engineers must account for factors like high-speed turbulent flow and shock waves. As this benchmark model illustrates, these complex phenomena can be accurately analyzed using the COMSOL® software.

Read More

Nathan Martin July 17, 2018

Following up on a previous blog post about glacier flow modeling, we are going to delve a bit further into a crucial component of geophysics modeling in general: parameterizing numerical models using observations. Let’s see how we can quantify sensitivity and infer unknown parameters through indirect observations using the COMSOL Multiphysics® software and add-on Optimization Module.

Read More

Guest Bojan Jokanović July 5, 2018

Guest blogger Bojan Jokanović of SGL Carbon GmbH, one of the world’s leading manufacturers of carbon-based products, discusses the optimization of thermal processes in the carbon industry. Carbon products are used in many industries, including semiconductors, car manufacturing, ceramics, and metallurgy. Properties of graphite including high-temperature stability, good thermal and electric conducting behavior, and high chemical stability make this material unique. However, carbon manufacturing is an energy-intensive industry. We must build digital process chains to optimize processes and minimize costs.

Read More

Brianne Costa July 4, 2018

Multijet tubular reactors are used to manufacture polymers such as polyester. The turbulent flow that occurs in this type of reactor can affect the manufacturing process, including the reaction kinetics, fiber quality, conversion, and yield. By developing a reactor model that fully takes into account both the fluid dynamics and chemical reactions, you can optimize a reactor design for efficient and reliable polymer production.

Read More

Brianne Costa June 25, 2018

In the 1998 song “This Kiss”, country singer Faith Hill describes the way she feels for the person she loves as “centrifugal motion”. Either Hill wants to get away from the song’s subject ASAP or she mixed up the term centrifugal with centripetal. We’ll forgive the 20-year-old song’s inaccuracies — besides, understanding the effect of centrifugal force is more important when designing components in a wide range of industries, such as centrifugal pumps for automotive applications, than in songwriting.

Read More

Christian Wollblad June 13, 2018

We have already discussed the factors that make a high-quality mesh and how to prepare a CFD model geometry for meshing. In this follow-up blog post, learn about physics-controlled meshing, adaptive mesh refinement, and how to use a variety of meshing tools in the COMSOL Multiphysics® software for your fluid flow simulations.

Read More



1 2 3 4 31