Improving Vertical-Axis Wind Turbine Efficiency with CFD Simulation

Caty Fairclough June 19, 2017

Vertical-axis wind turbines (VAWTs) offer many advantages over the more traditional horizontal-axis wind turbines (HAWTs). Still, VAWTs come with their own set of challenges, including low peak efficiency. One way to address these issues is by using pitch control systems, which can be optimized to improve the efficiency and energy generation of VAWTs. Let’s explore simulation research into optimizing an airfoil pitch control system for a VAWT via the COMSOL Multiphysics® software and add-on CFD Module.

Read More

Categories

Claire Bost June 14, 2017

When ambient air flows through porous media, it carries moisture. In this process, temperature and moisture are coupled: The vapor saturates depending on the temperature conditions, while latent heat effects due to evaporation and condensation modify the temperature. We discussed heat and moisture transport in air in a previous blog post. Let’s address the specific transport processes we need to consider in pores and how to model heat and moisture transport in porous media with the COMSOL Multiphysics® software.

Read More

Bridget Paulus June 8, 2017

Solar-grade silicon is becoming more popular for applications such as communications and photovoltaics. While it’s important to keep up with this growing demand, the current method of producing solar-grade silicon is energy intensive and expensive. To find a more efficient process, researchers at JPM Silicon GmbH explored a novel method using a microwave furnace. By simulating the internal processes, they aim to optimize their microwave furnace design to produce low-cost solar-grade silicon.

Read More

Bridget Cunningham May 24, 2017

Inertial focusing is a useful technique for various applications, particularly within the medical field. Ensuring its effectiveness requires accurately describing the migration of particles as they flow through a channel. Version 5.3 of the COMSOL Multiphysics® software gives you the tools to generate reliable results that agree with experimental data on inertial focusing. Our new benchmark model highlights these capabilities.

Read More

Ed Fontes May 15, 2017

Accurately modeling turbulent flow is always a challenge with turbulence models, since they inherently involve simplifications. In addition, accurate models tend to add equations that don’t help the convergence of the already highly nonlinear models. To solve this problem, version 5.3 of the COMSOL Multiphysics® software introduces the v2-f turbulence model. It combines the accuracy obtained with models that describe the anisotropy of the turbulent boundary layers with the robustness of two-equation turbulence models.

Read More

Categories

Walter Frei April 28, 2017

Whenever we have a heated or cooled part exposed to air, there is some transfer of heat from the part to the air via convection. The movement of the air can be either forced, via a fan, or free, as a result of the natural buoyancy variations due to changes in the air temperature. Today, we will look at several different ways of modeling these types of convection in the COMSOL Multiphysics® software.

Read More

Caty Fairclough April 18, 2017

To treat cerebral aneurysms, doctors can use endovascular methods, like flow-diverting stents, that alter blood flow and reduce the risk of rupture. When studying these methods, researchers normally assume that the blood flowing around the stent is a Newtonian fluid. This might be inaccurate, since blood flow around stents is slower than normal. Using the COMSOL Multiphysics® software, researchers tested the accuracy of modeling blood flow as a Newtonian fluid by comparing it to a more realistic non-Newtonian model.

Read More

Categories

Caty Fairclough April 5, 2017

When looking to mitigate air pollution, a major health concern in many highly populated cities, one option is to use plants and greenery. Before this method can be used, it’s important to confirm that this technique is a functional strategy for improving air quality and determine the best way of implementing it. To accomplish this, researchers created a model in the COMSOL Multiphysics® software to see how different types of greenery affect pollution reduction in urban canyons.

Read More

Categories

Caty Fairclough March 23, 2017

For those designing process equipment with conventional centrifugal pumps, rotating conical (or cone) micropumps may provide a simpler alternative. However, the performance of rotating cone micropumps needs further analysis, which can be difficult to achieve with only trial-and-error empirical studies. To solve this issue, researchers used the COMSOL Multiphysics® software to develop a realistic model for analyzing the fluid dynamics and performance of a rotating cone micropump. Here, we discuss their research and results.

Read More

Categories

Caty Fairclough February 23, 2017

Maintaining cool temperatures in buildings is necessary to keep people comfortable, particularly for those living in hot climates. For houses that aren’t optimized for thermal performance, cooling requires large amounts of energy and money. To reduce these costs, researchers from the University of Ferrara, Italy looked to improve roofs as part of the Life HEROTILE project. To accomplish this, they modeled novel roof tiles that are designed to increase air permeability and lower cooling costs.

Read More

Categories

Bridget Paulus February 6, 2017

If bubbles in a microfluidic device become stuck, it can cause the device to malfunction. Bubble entrapment depends on several factors, including the geometry and flow characteristics of the microchannel, as well as the surface properties of its walls. To study these aspects, Veryst Engineering modeled a bubble in a microchannel using the COMSOL Multiphysics® software. Today, we look at their results, which shed light on the device geometries and contact angles that lead to bubble entrapment.

Read More


Categories


Tags

1 2 3 4 9