Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

High Temperature Process Simulation

O. Geoffroy, and H. Rouch
INOPRO, Villard de Lans, France

The crystal growth industry uses high temperature processes. To improve production efficiency, a good knowledge of thermal effects is necessary. We show in this article a methodology to get reliable data by mixing simplified models, sensitivity studies and parameters adjustments. The precision is improved by comparison with experimental measurements.

Deep-Seated Spreading Model Tested on Etna Mount with FEM

F. Pulvirenti[1,2], M. Aloisi[1], M. Mattia[1], and C. Monaco[2]
[1]Istituto Nazionale di Geofisica e Vulcanologia sezione di Catania
[2]Università di Catania

Structural, morphological and ground deformation studies suggest that the eastern flank of Mt. Etna (eastern Sicily) is spreading seaward.  According to the deep-seated spreading model, both the volcanic edifice and its uppermost basement are spreading eastwards because of magma inflation processes related to a dike complex located at a depth between the summit craters and the Valle del ...

Modeling of the Transport Phenomena in Lithium-Ion Battery Electrolytes

A. Nyman, M. Behm, and G. Lindbergh
Applied Electrochemistry, School of Chemical Science and Engineering, Royal Institute of Technology Stockholm, Sweden

Modeling of mass transport is an important step in evaluating lithium-ion battery electrolytes and understanding cell performance. For high-power applications, concentration gradients in the electrolyte lead to limiting currents, which limit the power-density of the battery. The model has been used for determining a complete set of transport and thermodynamic properties for LiPF6 dissolved in an ...

Dynamic Deformation of Soft Particle in Dual-trap Optical Tweezers

Y. Sheng[1], S. Rancourt-Grenier[1], P. Bareil[1], P. Duval[1], M. Wei[2], A. Chiou[2], and J. Bai
[1]University Laval, Quebec, QC, Canada
[2]National Yang-Ming University, Taipei, Taiwan

A dual-trap optical tweezers is used for deforming the red blood cell (RBC) in suspension and studying its elasticity. The 3D deformation of the cells was computed with the elastic membrane theory. The calculated deformation can fit to experimental data resulting in cell’s elasticity coefficient. The static approach is valid only for small deformation (5-10%). For a large deformation such as ...

Expanding Your Materials Horizons

R.W. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The concept of virtual prototyping can be found linked to many different keywords in the literature: modeling, look-ahead problem solving, etc. This poster paper briefly discusses the potential real benefits that can be realized through pre-build cost savings, minimization of the number of prototype builds, and post-build problem avoidance for physical prototypes and production products. Relative ...

Finite Element Analysis Approach for Optimization of Enzyme Activity for Enzymatic Bio-fuel Cell

Y. Song, and C. Wang
Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are miniature, implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study using COMSOL Multiphysics, we use an EBFC chip, having three dimensional, highly dense micro-electrode arrays, fabricated by C-MEMS micro-fabrication techniques. Glucose oxidase (GOx) is immobilized on anodes for ...

Acoustic streaming flows in discharge lighting

T. Dreeben
Osram Sylvania, Beverly, MA, USA

Thomas Dreeben received his B.A. in Philosophy and Mathematics in 1985, and his Ph.D. in Mechanical Engineering in 1997, both from Cornell University. He has worked in automotive fuel systems at Ford Motor Company, and in turbulence at Sandia National Laboratories. He currently works in lighting research at OSRAM SYLVANIA, where his modeling focuses on fluid mechanics and heat transfer as they ...

Equation-Based Modeling: The Structural Contact Problem Solved by The Velocity Approach

O. Toscanelli, and V. Colla
Scuola Superiore S. Anna, Pisa, Italy

The contact between infinitely rigid body and deformable part is studied using the velocity as a dependent variable. A simple forging case is evaluated. The velocity approach is realized by means of using COMSOL with the Equation-Based Modeling. The contact model evaluated in this work is suitable to model the forging process. For a given mesh and element it is possible to choose the optimum ...

Numerical Modeling Of Thin Superconducting Tapes

F. Grilli[1], F. Sirois[2], and R. Brambilla[3]
[1]Karlsruhe Institute of Technology, Karlsruhe, Germany
[2]Ecole Polytechnique de Montréal, Montréal, Canada
[3]ERSE SpA, Milan, Italy

Second-generation high-temperature superconducting (HTS) tapes are very promising superconductors for ac applications and numerical models are very important for predicting their performance, e.g. for computing the ac losses. These tapes are characterized by a very large aspect ratio: the width of the superconducting film is typically between 4 and 12 mm, whereas its thickness is in the ...

Dynamic Simulation Of Particle Self-Assembly Applied To Microarray Technology

V. Di Virgilio, A. Coll, S. Bermejo, and L. Castañer
Universitat Politecnica de Catalunya, Barcelona, Spain

In this work we want to explore some techniques, microfluidic and electrospray-ionization based, suitable for dynamic microarrays\' fabrication. The fabrication techniques are based on manipulation and self-assembly of selective coated micro and nanobeads. The simulation will include electro-osmotic flow, species transport, and electrostatics.

Quick Search

2711 - 2720 of 3230 First | < Previous | Next > | Last