Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Pre-design of a Molten Salt Thorium Reactor Loop

J. P. Caire, and A. Roure
LEPMI-ENSEE, Saint Martin d'Hères, France

The generation 4 of molten salt reactors using the thorium cycle are characterized by a temperature close to 1000 oC. The very large heat transfers involved between the reactor core and the external parts with minimal thermal losses are a major issue. This study investigated a possible inner loop made of a series of conventional graphite filter plate exchangers, pipes and pumps, using the COMSOL ...

Simulation-based Analysis of the Spatial Sensitivity Function of an Electrical Capacitance Tomography System

A. Fuchs, and H. Zangl
Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Graz, Austria

This paper investigates the effects of the soft field character of an Electrical Capacitance Tomography system by means of analyzing the 3D sensitivity distribution of the pipe interior using Finite Element Analysis.The aim of the determined sensitivity is to overcome restrictions caused by the soft field without being forced to use (active) guarding strategies.

3D Modeling and Simulation of the Thermal Performance of Solid Cyclotron Targets

M. A. Avila-Rodriguez1, J. A. Sader1, and S. A. McQuarrie1,2
1Edmonton PET Centre, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
2Faculty of Medicine and Dentistry, Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada

COMSOL Multiphysics was used to model and simulate the thermal performance of solid targets irradiated with charged particles.Results showed that materials with a high thermal conductivity to heat capacity ratio behave better in cooling dynamic systems requiring fast dissipation of heat.

Implementation of EC-NDT for in Depth Detection of Defects in Metallic Plates

M. Cacciola, S. Calcagno, D. De Carlo, F. Laganà, G. Megali, F. C. Morabito, D. Pellicanò, and M. Versaci
Department of Informatics, Mathematics, Electronics and Transportations (DIMET) - "Mediterrane" University of Reggio Calabria, Reggio Calabria, Italy

Eddy Current Non Destructive Testing is exploited to evaluate the structural integrity of metallic objects. The aim of this paper is to detect defects located in depth within the inspected object; within this framework, we studied the modelling of exciting coils useful to detect structural flaws. The simulations have been carried out by considering the movement of the coil over a structural steel ...

Two-Phase Modeling of Gravity Drainage of Bitumen from Tar Sand Using In-Situ RF Electrical Heating

A. Hassanzadeh
Pyrophase Inc., Chicago, IL, USA

In-situ electrical heating technologies are among the most recent technologies used for bitumen recovery from tar sand and oil shale. These technologies have limited environmental impact because there is little disturbance of the land, and water and solvents are not used. Two-phase movement of bitumen and air in tar sand porous deposit is modeled using COMSOL Multiphysics. A system of non-linear ...

Computation of Three-Dimensional Electromagnetic Fields for an Augmented Reality Environment

A. Buchau, and W. Rucker
Institut für Theorie der Elektrotechnik, Universität Stuttgart, Germany

Augmented reality is predestined for visualization of electromagnetic fields in air or inside transparent matter. Real existing objects are studied and invisible electromagnetic fields are added as virtual objects. Hence, experts as well as students are able to connect electromagnetic fields easily with studied objects. They can concentrate on physical effects instead on reading figures. Here, an ...

Can the Drumhead be Decomposed from Spectra? - An Application for the Chesapeake Bay

K. McIlhany[1], and R. Malek-Madani[2]
[1]Physics Department, United States Naval Academy, Annapolis, MD, USA
[2]Mathematics Department, United States Naval Academy, Annapolis, MD, USA

In 1966, mathematician Mark Kac proposed the question "Can One Hear the Shape of a Drum?" in an article for American Mathematical Monthly. In attempting to resolve the Chesapeake Bay from an eigenfunctional approach, a one-to-one mapping of this famous problem has been identified. The quote above will re-write to "Can One Hear the Shape of a Drum from Multiple Point-Sampled Spectra?". This ...

Development of an Interlinked Curriculum Component Module for Microchemical Process Systems Components Using COMSOL Multiphysics

A. Mokal, and P. Mills

Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

COMSOL Multiphysics provides a powerful numerical platform where various models for microchemical process technology components can be readily created for both education and research. This modeling tool allows chemical engineering students to focus on understanding the effects of various microchemical system component design and operational parameters versus coding and debugging of the numerical ...

Field-Circuit Coupling Applied to Inductive Fault Current Limiters

D. Lahaye[1], D. Cvoric[2], S. de Haan[2], and J. Ferreira[2]
[1]Delft Institute of Applied Mathematics, Department of Electrical Engineering, Mathematics and Computer Sciences, TU Delft, The Netherlands
[2]Electrical Power Processing Unit Department of Electrical Engineering, Mathematics and Computer Sciences, TU Delft, The Netherlands

Fault Current Limiters (FCLs) are expected to play an important role in the protection of future power systems due to the rising levels of the short-circuit currents. The inductive FCLs, comprising magnetic cores and one or more dc and ac windings, are particularly interesting because they inherently react on the fault. The so-called open-core FCL configuration employs only one magnetic core for ...

Study of a Self Heating Process of Tetrafluoroethylene by the Exothermic Dimerization Reaction to Octafluorocyclobutane

M. Beckmann-Kluge[1], H. Krause[1], V. Schröder[1], A. Acikalin[2], and J. Steinbach[2]
[1]Federal Institute for Materials Research and Testing, Berlin, Germany
[2]Technical University Berlin, Berlin, Germany

The self heating process of Tetrafluoroethylene caused by an exothermic dimerization reaction was studied. The heat of reaction can lead to a thermal explosion by the decomposition of the Tetrafluoroethylene. Different reaction kinetics, including multistep kinetics, were used to describe the mass balance. The COMSOL Chemical Engineering Module was used to perform the simulation which was ...

Quick Search

2701 - 2710 of 3230 First | < Previous | Next > | Last