Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multifunctional Fluid Power Components using Engineered Lattice Structures

S. Newbauer, D. Cook, and D. Pettis
Milwaukee School of Engineering
Milwaukee, WI

Designing a component with multiple functions, e.g. load bearing and noise attenuation, can increase the effectiveness of each component and reduce the complexity of the overall system, thereby improving system efficiency as well. Current multifunctional components include metal foam. It is posited that the cellular pores of the metal foam can be engineered and optimized for desired ...

Thermal Stress in a Zero Thermal Expansion Composite

C. Romao, and M. White
Dept. of Chemistry and Institute for Research in Materials
Dalhousie University
Halifax, NS

A series of 2-D finite element models of a ZrO2-ZrW2O8 composite system were created in COMSOL Multiphysics to study the effect of pores between the matrix (ZrO2) and filler (ZrW2O8) materials. Pores were modeled as ellipses concentric with the filler particles. Seventeen model geometries of varying microstructure were studied in order to determine correlations between microstructural factors ...

Design Optimization of a Microphone by Modeling and Simulation

E. Nesvijski
Acoustics@ MBD Consultants LLC.
Westborough, MA

Applied 2D scale model presents a semi-realistic design or a microphone and shows the main mechanical, magnetic coil and electrical parts. Some non-vital elements are excluded for better focusing on acoustic properties of the microphone. The models are tested for frequency response, acoustic power loss, directivity patterns as well design and materials optimization. Based on 2D model analysis ...

Complex Geometry Creation and Turbulent Conjugate Heat Transfer Modeling

I. Bodey[1], R. Arimilli[1], and J. Freels[2]
[1]Dept. of Mechanical, Aerospace and Biomedical Eng., The University of Tennessee, Knoxville, TN
[2]Research Reactors Division, Oak Ridge National Laboratory, Oak Ridge, TN

The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is an 85 MW, light-water moderated, research reactor that operates at low temperature and high pressure. The HFIR is presently scheduled to convert from a high enriched uranium fuel (HEU) to a low enriched uranium fuel (LEU) in 2019. Due to cost constraints, not all experiments will be repeated for the LEU fuel ...

Improving Fuel Usage in Microchannel Based Fuel Cells

P. Fodor, and J. D'Alessandro
Dept. of Physics
Cleveland State University
Cleveland, OH

In this work a miniaturized fuel cell design based on microchannels, into which the liquid fuel and oxidizer streams are fed through T shaped connectors, is optimized for improved fuel usage. This particular design exploits the laminar nature of the fluid flow at small Reynolds numbers to keep the fuel and oxidizer confined in the vicinity of the corresponding electrodes without the need of a ...

Sequential Estimation of Temperature-Dependent Thermal Diffusivity in Cherry Pomace during Nonisothermal Heating

I. Greiby[1], D. Mishra[2], and K. Dolan[3]
[1]Dept. of Biosystems & Agricultural Eng., MSU, East Lansing, MI
[2]Dept. of Biosystems & Agricultural Eng., MSU, East Lansing, and Nestle Nutrition, PTC Fremont, MI
[3]Dept. of Biosystems & Agricultural Eng. and Dept. of Food Science & Human Nutrition, MSU, East Lansing

Fruit and vegetables are a rich source of many bio-active compounds from which value-added nutraceuticals can be produced. To design processes for these solids that will maintain food safety and maximize quality over a large temperature range, temperature-dependent thermal properties are needed. The objective of this work was to estimate temperature and moisture-dependent thermal diffusivity of ...

Optimization of the Lithium Insertion Cell with Silicon Negative Electrode for Automotive Applications

R. Chandrasekaran, and A. Drews
Research and Advanced Engineering
Ford Motor Company
Dearborn, MI

The US Advanced Battery Consortium (USABC) has established goals for long term commercialization of advanced batteries for electric vehicle applications. In this work, a dual lithium-ion insertion cell with silicon as the negative electrode and an intercalation material as the positive electrode is modeled using COMSOL Multiphysics. Both are composite porous electrodes with binder, void volume ...

Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4

M. Gobbert, and D. Trott
University of Maryland Baltimore County
Baltimore, MD

Many application problems have non-smooth forcing terms, such as the Dirac delta function. The convergence order for the FEM solution is limited by the regularity of the solution in this case. This paper presents information on the techniques needed in COMSOL 4 to enable FEM convergence studies for time-dependent problems of this type, including how to correctly implement the Dirac delta ...

Multiphysics Modeling of Magnetorheological Dampers

D. Case, B. Taheri, and E. Richer
Southern Methodist University
Dallas, TX

A magnetorheological fluid consists of a suspension of microscopic magnetizable particles in a non-magnetic carrier medium. When a magnetic field is produced in the same space, the microscopic particles suspended in the fluid become oriented and form chains along the magnetic flux lines, changing the fluid’s rheology. This project uses COMSOL Multiphysics to examine the magnetic flux lines ...

Kinetics of Zebrafish Dorsoventral Patterning

B. Jordan, and P. Müller
Harvard University
Cambridge, MA

The specification of cell types and morphogenesis of many biological systems are regulated by the concentrations of signalling molecules. Many systems employ a pair of secreted short-range activators and long-range inhibitors, and these are widely used to generate complex patterns during development. However, the biophysical mechanisms that regulate the different ranges of activators and ...

Quick Search

2661 - 2670 of 3226 First | < Previous | Next > | Last