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Abstract  

 
This work presents a small helical swimmer model in a low Reynolds number (Re) environment governed by the equation of 

motion for Stokes flow in COMSOL Multiphysics®. The entity, a few centimetres helical robot, is located inside of a pipe full of 

silicone oil, where the forces caused by the robot's rotation rate 𝛀 and the axial velocity U are studied. By means of the COMSOL 

Multiphysics® Computational Fluid Dynamics (CFD) Module, it is possible to implement a laminar flow in which inertial terms 

are neglected (Stokes flow). Within this framework, the work is divided into two independent parts: a first one in which the 

longitudinal motion is simulated, and a second one in which it is performed the rotation of the helix. Results are compared with 

the Resistive Force Theory (RFT) based on the premise that, in low Re environments, force and torque contributions caused by 

the robot's axial velocity U and rotation rate 𝛀 are additive. The input flow emulates the longitudinal motion of the robot in 

order to obtain the drag forces caused by fluid resistance. The motion rate study uses the moving mesh to emulate the spinning 

of the helix. To lighten the computational cost of the model, a frozen rotor approximation is implemented to estimate the forces 

and torque generated by rotation. By means of this model, it is possible to study the impact of robot's geometry parameters on 

swimming performance, like the pitch 𝝀, the length L and the exponential envelope. Therefore, different propeller geometry 

combinations have been studied in this work. From an efficiency point of view, an optimal value is obtained when 𝝀 = 𝟕𝑹, where 

R is the radius of the helix. Likewise, the linear dependence of hydrodynamics forces regarding the normalized length of the 

helix is verified. Finally, results reveal that the COMSOL Multiphysics® model is more appropriate than RFT in a design 

process, since it can estimate the robot performance, even for complex geometries, in a standalone simulation. 

 

 

1. Introduction 
 

Microscale technology is receiving much more attention in the 

recent years since it is potentially suitable for very small spaces, 

and, therefore, very useful for biomedical applications in a less 

invasive way (Nelson, Kaliakatsos and Abbott 2010). Some of 

them are focused on an accurate distribution of drugs or the 

manipulation and interaction with tiny entities in the 

environment (Boguet 2015, Diller and Sitti 2013). To 

accomplish this goal, it is necessary to be familiarised with the 

microscale hydrodynamics and the low Reynolds number (Re) 

regime. In this context, Purcell introduced the swimming 

efficiency by a rotating helical flagellum in low 𝑅𝑒 (Purcell 

1997), obtaining a linear relationship between the forces 𝐹 and 

torque 𝑁 and its linear 𝑈 and rotational speed 𝛺 by means of 

the resistive matrix (He-Peng, et al. 2014). This matrix is 

proportional to the fluid viscosity and depend on the helix 

shape.  

 

The main purpose of a helical propeller is to boost microscale 

entities in a non-invasive surgical procedure. One approach to 

understand how the shape of these propellers affect swimming 

efficiency is through the slender-body theory (SBT), which 

calculates the flow field around the helix by means of the 

Stokeslet and its derivates, a singular point force embedded in 

a Stokes flow along the centreline of the flagellum 

(J.J.L.Higdon 1979). The limitation of this theory is the 

necessity of evaluating intractable integrals constantly to 

determine the force on each point. In (Cortez, Fauci y 

Medovikov 2005), it is presented the method of the regularized 

Stokeslet for computing a Stokes flow leaded by forces 

distributed along material points, a simple discretization of the 

SBT for 𝑁 stokeslets located along the surface of the solid body. 

To simplify the SBT, (Gray and Hancock 1955, Lighthill 1979) 

introduced the Resistive Force Theory (RFT) by considering 

each segment of the flagellum represented by the Stokeslet and 

its derivates as an independent slender rod. Through this 

simplification, it is possible to estimate the resistive matrix 

coefficients in first instance and still understand how the helix 

shape will influence its swimming efficiency. 

 

Another approach to study the swimming efficiency of a helix 

is by means of simple experiments. In (Xu, et al. 2015), it is 

analysed the impact of helix geometry in swimming efficiency 

through a design of experiments, a test series in which changes 

are made in the geometrical parameters and the effects on the 

response variables are measured. In (Rodenborn, et al. 2013) it 

is compared the slender-body theory with the RFT in 

conjunction with experimental results. Finally,  fundamental 

properties of bacterial propulsion are determined by measuring 

the force required to hold the bacterium Escherichia coli in an 

optical trap in (Chattopadhyay, et al. 2006).  

 

These related works analyse the mechanism of swimming either 

from a theoretical and an experimental point of view. Therefore, 

and based on the state of art, there is a gap in simulation and 

analysis of how the helix geometry affects the swimming 

performance, especially in the case of one parameter depending 

on another, e.g., a variable helix radius or a variable pitch along 

the length of the propeller. Within this framework, the main 

purpose of this work is to implement a helical propeller model 

in COMSOL Multiphysics® to study how changes in 

geometrical parameters influence swimming efficiency in a low 

𝑅𝑒 environment. To accomplish this goal, three parameters are 

studied: the pitch 𝜆, the length 𝐿 and an exponential envelope 

factor shape 𝛼. The propeller is based on the cardiovascular 

system platform presented in (Nuevo-Gallardo, et al. 2019) as 

future experiments will be conducted on this environment.  

 



The document is organised as follows. Section 2 introduces 

common properties of microscale hydrodynamics, Re and 

Stokes equations, widely used in this area. Section 3 presents 

the model in COMSOL Multiphysics®. Section 4 shows the 

three test parameters studied and the simulations results. 

Finally, the conclusions of this work are drawn in Section 5. 

 

2. Hydrodynamics in low Re regime 
 

Microscale hydrodynamics requires to work in low Re 

environment. This value captures the flow characteristic 

regime, being expressed as: 

 

 
𝑅𝑒 =

𝑣𝐿𝜌

𝜇
 

 

 

(1) 

where 𝑣 is the maximum fluid velocity, 𝐿 is the characteristic 

length, and 𝜌 and 𝜇 are the density and the dynamic viscosity 

of the fluid, respectively. 

 
Table 1: Blood properties of the cardiovascular system. 

 

Property Value Units 

Blood Density 1070 kg/m3 

Blood Dynamic Viscosity 3.5 10−3 Pa⋅s 

Output Heart Flow 6 10−4 m3/s 

Silicone Oil Density 964 kg/m3 

Silicone Oil Dynamic Viscosity 0.0964 Pa⋅s 

 

For applications with micro entities inside of the human body, 

the corresponding value of 𝑅𝑒 must be calculated using blood 

properties such as the ones given in Table 1. With these values, 

a low 𝑅𝑒 number environment is achieved. In contrast, for a 

robot of the order of millimetres or centimetres, it is necessary 

to increase the viscosity of the fluid to keep a low 𝑅𝑒 number, 

and consequently, achieve an equivalent environment. For 

instance, it can be used silicone oil instead of blood                    

(see Table 1). A low 𝑅𝑒 number implies that viscosity 

predominates over inertia, affecting the dynamics of fluid 

particles (Happel and Brenner 1983). Therefore, Navier-Stokes 

and continuity equations for a Newtonian and an 

incompressible fluid are reduced to the Stokes equation: 

   

 −𝛻𝑝 + 𝜇𝛻2𝑢 = 0 
 

𝛻 ⋅ 𝑢 = 0 

 

 

(2) 

where 𝑢 is the flow velocity, 𝛻𝑝 is the gradient of pressure and 

∇ is the nabla operator. Since equation (2) is a linear and a time-

independent expression, the relation between kinetics and 

kinematics is also linear. Thus, if the solid body is subject to an 

external force 𝐹 and/or a torque 𝑁, it will move with a linear 

velocity 𝑈 and a rotation rate 𝛺, satisfying the abovementioned 

resistive matrix: 

  

[
𝐹
𝑁

] =  [
𝐴 𝐵

𝐵𝑇 𝐶
] ⋅  [

𝑈
Ω

] 

 

 

(3) 

The terms of equation (3) rely purely on the geometrical 

parameters of the swimmer. For instance, the resistive matrix of 

an ellipsoid cell body will be diagonal since it can not propel 

itself. In most cases, the geometry makes impossible to 

calculate matrix coefficients analytically. Nevertheless, for a 

straightforward helical shape, these can be estimated from RFT 

by: 

 

 
𝐴 = (𝜉⏊ sin2 𝜃 + 𝜉⫽ cos2 𝜃)

𝐿

cos 𝜃
 

𝐵 = 𝑅𝐿(𝜉⏊ − 𝜉⫽) sin 𝜃 

𝐶 = 𝑅2(𝜉⏊ cos2 𝜃 + 𝜉⫽ sin2 𝜃)
𝐿

cos 𝜃
 

 

 

 

(4) 

where 𝜃 =  tan−1(
2𝜋𝑅

𝜆
 ), 𝑅 and 𝐿 are the radius and the length 

of the propeller, and 𝜉⏊ and 𝜉⫽ are the Gray and Hancock’s drag 

coefficients, respectively, given as follows: 

 

 
𝜉⏊ =

2𝜋𝜇

ln (
2𝜆
𝑎

) −
1
2

 

 

𝜉⫽ =
4𝜋𝜇

ln (
2𝜆
𝑎

) +
1
2

       

 

 

 

 

(5) 

where 𝑎 is the filament radius and 𝜆 is the pitch of the propeller. 

In order to find which terms of equation (3) are most suitable 

for an optimal shape, it is convenient to use the next efficiency 

ratio, see (He-Peng, et al. 2014): 

 

 
𝜖 =

𝐵2

4𝐴𝐶
 ⋅ 100 

 

 

(6) 

Drag and thrust can be easily computed in COMSOL 

Multiphysics® through the integral of total stress parallel to the 

helix, i.e.: 

 
𝐹𝑥 = ∫𝜎𝑥𝑑𝑆

𝑠

 
 

(7) 

   

while torque can be obtained by integration of the vectorial 

product of the stress (8), i.e.: 

 

 

 
𝑁𝑥 = ∫(𝑧𝜎𝑦 − 𝑦𝜎𝑧)𝑑𝑆

𝑠

 
 

(8) 

   

where 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 are the stress in the x, y and z directions 

and 𝑑𝑆 is the surface differential. Through equations (7) and 

(8), it is possible to estimate coefficients of equation (3) 

numerically as: 

 
 

𝐴 =
𝐹𝑥

𝑈𝑠𝑖𝑚

 

 

 

(9) 

 
𝐵 =

𝐹𝑥

Ω
 

 

(10) 

 

 

 

𝐶 =
𝑁𝑥

Ω
 

 

(11) 

3. Modelling in COMSOL Multiphysics®  

 
A low Re number implies that linear and rotational speed 

contributions are additive (see equation (3)). Therefore, the 



work is divided into two independent simulations: a first one to 

emulate longitudinal motion, and a second one to perform 

rotation. For this purpose, a helical swimming robot inside of a 

lumen has been developed in COMSOL Multiphysics® to 

analyse how changes in the geometry of the helix affects its 

dynamics within a fluid.  

 

This model emulates the lumen of a human body by means of 

two control regions differentiated by two cylinders: a 

surrounding fluid close to a helix located in the centre of the 

model and the remaining fluid inside the lumen. This distinction 

simplifies the helix motion, since, as will be commented later, 

a moving mesh will be attached to this inner control region.  

 

 
 
Figure 1 Model of the helical swimming robot within a lumen flow 

environment in COMSOL Multiphysics®. 

Regarding the helix geometry, its design is based on the 

schematic shown in Figure 2. 

 

 
Figure 2. Schematic of a helical flagellum. 

 

with radius 𝑅, pitch 𝜆, length 𝐿, filament radius 𝑎 and pitch 

angle 𝜃. Parameters 𝑅 and 𝑎 are constant and are shown in 

Table 2, as well as, the linear and angular speed of the robot and 

the lumen radius. It is important to remark that, since 

experiments will be carried out on the cardiovascular system 

platform designed in (Nuevo-Gallardo, et al. 2019), the set-up 

and its dimensions are adapted to the size of this environment. 

Especially, the size of the lumen, which matches the size of the 

pipes used in the platform. 

 

Likewise, as commented in the introduction of this document, 

the influence in swimming efficiency of an exponential 

envelope will be studied. In helixes, there is a geometrical 

parameter related to the function that envelops the own helix, 

as illustrated in Figure 3. In this work , an exponential envelope 

of the form 1 − 𝑒−𝛼𝑠2
 is modelled, where 𝑠 defines the helix 

coordinates and 𝛼 is a constant which defines how fast the 

envelope approaches to 1. To do so, three parametric functions 

of this type are included in the model and swept along the axial 

axis. 

 

 
 
Figure 3. Isometric and front view of a propeller with the exponential 

envelope 1 − 𝑒−𝛼𝑠2
  applied over the helix radius regarding 𝛼.  

 

A laminar fluid is implemented by means of the Computational 

Fluid Dynamics (CFD) Module for each part. The lumen is 

filled with silicon oil to ensure that a low 𝑅𝑒 condition is 

achieved. Thus, it is possible to emulate a Stokes flow in which 

inertial terms are rejected. Furthermore, a non-slip condition is 

attached to the surface of the helix and the surface of the lumen. 

This setting ensures that the fluid will have zero velocity 

relative to these boundaries. The longitudinal motion of this 

propeller is achieved by including an input/output flow into the 

lumen. In this case, the input flow velocity is that on the 

platform, being equivalent to the mean blood velocity into the 

ascending aorta to reproduce the conditions given inside the 

cardiovascular system of the human body (Nuevo-Gallardo, et 

al. 2019). The CFD Module allows to implement this part very 

easily, as shown in Figure 4. 

 

Likewise, the helix rotation requires the addition of a moving 

mesh. In this case, a general velocity Ω moving mesh is 

implemented and attached to the inner cylinder as a first 

approach of rotation. The frozen rotor approximation is 

included in simulation to reduce the execution time 

significantly. With this setting, the helix does not rotate during 

the execution, however, rotation and associated momentum 

terms are imparted to the flow. Therefore, it is possible to obtain 

a pseudo-steady-state condition of the helix rotation dynamics. 

 

 
 
Figure 4. Laminar flow COMSOL Multiphysics® drop-down menu. 

 

 

 



Table 2: Geometrical and fluid parameters used in simulation. 

Property  Value Units 

Lumen Radius (𝑅𝐿) 5 cm 

Filament Radius (𝑎) 0.4 mm 

Helix Radius (𝑅) 6.4 mm 

Angular Velocity (Ω) 6.2832 rad/s 

Linear Velocity (𝑈) 0.0670 m/s 

 

4. Simulations and results 
 

To study how changes in geometrical parameters influence 

swimming performance of the helical robot, an efficiency study 

has been carried out on the model described in the previous 

section modifying the following three parameters: 

 

1. Helix pitch 𝜆. 

2. Helix length 𝐿. 

3. Helix envelope factor 𝛼. 

 

In particular, the developed model allows to estimate terms of 

equation (3) by means of equations (9)-(11). Simulated results 

are compared in all the cases with RFT through MATLAB. The 

geometrical values used in simulation are given in Table 3. 

Results of normalized thrust, drag, torque and efficiency are 

shown next. 

 
Table 3: Geometrical parameters range used for the simulation and for 

the RFT. Study 1, 2 and 3 refer to the pitch 𝜆, length 𝐿 and the envelope 

𝛼 cases, respectively. 

 

 Parameter range 

Study 𝝀 𝑳 𝜶 

1 𝑅 – 20𝑅 
5𝑅, 10𝑅, 15𝑅, 

20𝑅, 25𝑅 
– 

2 7𝑅 𝑅 – 20𝑅 – 

3 7𝑅 5𝑅, 10𝑅, 15𝑅 0.1 –  0.1 ⋅ 10−2 

 

4.1. Study 1: Influence of Helix Pitch 

 
To check how pitch 𝜆 affects the hydrodynamics forces and the 

efficiency, a parametric sweep study is considered for 

parameter 𝜆. In this case, a normalized 𝜆 varies from 𝑅 to 20𝑅 

with a step of 𝑅/2. Likewise, five different values of helix’s 

lengths 𝐿 are simulated. In this and all subsequent cases, when 

the helix rotates at speed of Ω, thrust is estimated computing 

equation (7) and torque computing equation (8). In the same 

way, equation (7) also allows to estimate drag when the helix 

moves at a linear speed 𝑈. These simulated results for thrust, 

drag and torque are compared with the obtained applying RFT 

(equations (3) – (5)). 

 

As shown in Figure 5(a), discrepancy in thrust is significant. 

RFT seems to be a good approach to estimate the 

hydrodynamics forces generated by a helical swimming robot 

for large values of 𝜆; nevertheless, as pitch approaches to zero, 

discrepancies between RFT and simulation become too large.  

 
   (a) 

 
   (b) 

 
   (c) 

 
   (d) 

 

Figure 5. Normalized thrust (a), drag (b) and torque (c) generated by 

the helix as a function of normalized 𝜆 regarding the radius 𝑅. 

Efficiency (d) shows an optimal point when 𝜆 = 7𝑅.   
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Differences in drag and torque (see Figure(b) and (c)) are less 

noticeable. As the pitch approaches to zero, drag and torque 

increase exponentially. If a fixed torque ratio is associated to a 

helix turn, the greater number of turns, the greater the torque 

generated. However, it will also increase the drag associated to 

the robot. And in what efficiency in swimming is concerned 

(see Figure 5(d)), it can be seen that there is an optimal when 

𝜆 = 7𝑅, but being greater as the length of the helix increases. 

These results show that, for sizes close to the size of a 

bacterium, COMSOL Multiphysics seems to be a better 

approach to estimate thrust, drag and torque generated by a 

helical swimming robot. 

 

4.2. Influence of helix length 

 
The second study analyses how changes in the length 𝐿 of the 

helix affect swimming performance. Through RFT it can be 

said that there should be a linear dependence between the 

hydrodynamics forces and the helix length 𝐿, since it multiplies 

the factors of the resistive matrix (equation (4)) directly. In this 

study, pitch matches the optimal value obtained previously   

𝜆 = 7𝑅. Normalized length 𝐿 varies from 𝑅 to 20𝑅.  

 

Figure 6 illustrates normalized thrust, drag and torque for 

normalized L with respect to the radius 𝑅 in simulation and 

applying RFT. As can be observed, there exist significant 

differences between RFT and the results obtained with 

COMSOL Multiphysics®, probably because Gray and 

Hancock’s drag coefficients are not the best approach for the 

longitudinal and the perpendicular drag of the helix.  

Nevertheless, the linear dependence is verified in simulation for 

thrust and torque, and somehow for drag. Conclusions drawn 

regarding the length 𝐿 of the helix are straightforward: thrust, 

drag and torque will increase as 𝐿 increases.  

 

It is important to remark that, due to convergence problems with 

the simulated model, efficiency could not be calculated 

correctly. However, all the hydrodynamics forces can be 

approximated by a linear function, and consequently, it is 

foreseeable that efficiency will be a constant value regarding 𝐿, 

as long as it was defined as shown in equation (6). Therefore, 𝐿 

will be an important parameter to be taken into account 

depending on the application, but rather than being a crucial 

factor to take into account when studying the swimming 

efficiency of the robot.  

 

4.3. Influence of helix envelope factor 
 

In this last study, the influence of the envelope shape of the 

helix on the swimming efficiency is analysed for three different 

helix lengths. With this configuration, it is possible to modify 

the value of 𝛼 and simulate different shapes. As shown in 

Figure 7, efficiency decays as the value of 𝛼/𝑅 comes close to 

zero (actually, for values lower than 2𝛼/𝑅), but grows slightly 

as 𝛼/𝑅 increases for a value higher than 2𝛼/𝑅, keeping almost 

constant. Therefore, there is no advantage in using this 

configuration for the time being. In case of using a body head, 

if the radius of the head matches the radius of the helix, the 

drawback in efficiency would probably be eliminated; since, in 

the natural motion of the robot, the head would cover the helix 

until it will reach its original shape. 

  
   (a) 

 
   (b) 

 
   (c) 

 

Figure 6. Normalized thrust (a), drag (b) and torque (c) generated by 

the helix as a function of normalized 𝐿 regarding the radius 𝑅.   

 

5. Conclusions 
 

In this work, a robot helix model propelled in a fluid has been 

implemented in COMSOL Multiphysics® to study how 

changes in geometrical parameters influence swimming 

efficiency. Through this model, a numerical RFT equivalent 

was obtained, in which the relationship between the linear and 

rotational speed, and the hydrodynamic forces, was estimated. 

Drag and thrust were obtained by integration of the stress 

parallel to the helix and torque by integration of the vectorial 

product of the stress perpendicular to the axial direction. In 

particular, the influence of three different aspects were studied: 

pitch 𝜆, length 𝐿 and the shape of the helix envelope. An 

optimal in efficiency was obtained when 𝜆 = 7𝑅, being greater  
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Figure 7. Swimming efficiency as a function of normalized 𝛼/𝑅  

 

as the length of the helix increases. The linear dependence of 

hydrodynamic forces regarding the length of the helix was 

verified. However, due to convergence problems with the 

simulation, efficiency results could not be estimated for 

changes in length 𝐿. A helix model with an exponential 

envelope was also implemented. It is concluded that this shape 

was not convenient to maintain swimming efficiency. 

 

Future works will go in different directions. Firstly, it would be 

interesting to manufacture milli and micro robots based on the 

conclusions drawn from these simulations. It will be necessary 

to test these prototypes on the cardiovascular system platform 

as commented before. Moreover, future approaches will also 

include the body head of the robot in the COMSOL 

Multiphysics® model. It would be also required to investigate 

how the efficiency is affected by the length of the helix in more 

detail. Likewise, it will be necessary to relate the power 

consumption and the efficiency, and to study the performance 

of new and ground-breaking designs, which will allow to 

increase the swimming efficiency. 
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