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Abstract: In order to facilitate the design of 

quartz resonators as sensors for the oil and gas 

industry, the current work focuses on the 

development of a three-dimensional finite 

element model to calculate the frequency change 

of anisotropic quartz resonators associated with 

the application of temperature and pressure. In 

doing so, the simulation employs the incremental 

linear field equations for superimposed small 

vibrations onto nonlinear thermoelastic stressed 

media, as given by Lee and Yong [1]. This 

method involves solving geometric and material 

nonlinearities for the both the thermal stress and 

piezoelectric models in COMSOL. The 

thickness-shear mode frequency response of the 

model was benchmarked to experimental sensor 

data with temperature ranging from 50°C to 

200°C (in 25°C increments) and pressure from 

14 psi to 20,000 psi (with 2,000 psi increments, 

approximately). The normalized frequency 

response to the change in external pressure 

matched very well with experimental data at 

lower temperatures, and by the same token, the 

temperature-frequency response matched the 

experimental trend well for lower pressures. The 

study found, however, that applying high 

temperature and pressure simultaneously leads to 

considerable error in the frequency response. It is 

hypothesized that the increased error at extreme 

conditions is due to the current lack of certain 

material properties of quartz, known as the 

temperature derivatives of the third-order elastic 

coefficients. 
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1. Introduction 

 
Since the early 20th century, quartz sensors 

have been used to measure such physical 

parameters as temperature, pressure, and film 

thickness, among many others. Because of their 

compact size and rugged characteristics, 

combined with excellent sensitivity and long-

term stability, specialized quartz crystal 

resonators are well suited to serve as down-hole 

temperature and pressure sensors in oil and gas 

wells, a basic example of which is given in 

Figure 1. Such resonators utilize the 

nonlinearities in quartz’s frequency response 

associated with changes in temperature and 

pressure. In spite of the fact that quartz has been 

used in this regard for the majority of the last 

century, its complete capability has not been 

fully realized. The primary reason is because of 

the complex anisotropic and nonlinear nature of 

quartz’s electro-mechanical properties. In 

developing an accurate finite element model for 

the frequency behavior of quartz with respect to 

external factors, which is the goal of the current 

work, one must explicitly take into account these 

complications. Successfully doing so will 

establish a valuable tool to efficiently explore 

new sensor designs and additionally yield insight 

into the modeling of nonlinear multi-physical 

phenomena in general. 

Predicting the frequency response of quartz 

to changes in temperature and pressure is not a 

new concept. Empirical data documenting the 

Figure 1: Quartz pressure sensor geometry with end 

caps [2] 



frequency-temperature behavior of specific cuts 

was compiled by such researchers as Bechmann 

et al. in 1962 [3], while similar empirical data for 

frequency-pressure or frequency-stress response 

includes the work of EerNisse [4], among many 

others. Yet two factors preclude this data from 

direct usage in the current study: the nonlinearity 

of the combined temperature and pressure 

response which on the whole is much less 

documented, and the desire to predict the 

response of previously untested cut angles and 

geometries of quartz. For this reason, a full finite 

element solution for the frequency response, 

which COMSOL provides, is necessary as it is 

built upon the fundamental anisotropic 

constitutive properties of quartz, rather than 

empirical trends. Patel provides such a finite 

element solution [5], but does not examine the 

effect of external pressures on frequency 

response. 

This fundamental approach for such a 

complex material model is made possible by a 

modification to the standard thermoelastic 

governing equations, as suggested by Lee and 

Yong [1]. Their field equations for small 

vibrations superposed on nonlinear initial strain, 

referred to here as the incremental method, forms 

the backbone of the current simulation algorithm. 

The incremental method allows the full material 

definition of quartz, including its nonlinear 

elastic response and temperature dependant 

properties, to serve as the basis for the returned 

frequency response. The current work shows that 

the error of the predicted frequency is highest at 

the most extreme combined temperature and 

pressure, likely due to certain material properties 

of quartz that are not currently available in 

literature, known as the temperature derivatives 

of third-order elastic coefficients. 

 

2. The Governing Equations of 

Piezoelectricity and the Incremental 

Method 

 
In this context, the incremental method can 

be seen as a deviation from the governing 

equations of linear piezoelectricity in stress-

charge form, where ���  is the second Piola-
Kirchhoff stress tensor, ���  is the Lagrangian 
strain tensor, ��  is electric displacement, �� is the 
electric field, 	����


  is stiffness, ���� is the 
piezoelectric coupling matrix, and ���


  is 

dielectric permittivity: 

��� = 	����

 ��� − 	������  

�� = ������� + 	���

�� 

In the standard COMSOL piezoelectric interface, 

these linear constitutive equations are combined 

with the partial differential equations over the 

domain for mechanical motion and Gauss’s Law 

for an insulator, respectively, where additionally 

�� is density and �� is displacement (��� being 
acceleration): 

���� � = ���,� 
��,� = 0 

While these equations serve as the most 

simplistic representation of piezoelectric 

phenomena, they are not themselves adequate to 

accurately represent the changes in a crystal 

oscillator’s resonant frequency with temperature 

and pressure. These trends require temperature 

dependant material properties and a nonlinear 

elastic formulation. The incremental method 

provides these additional features while also 

allowing the simplification that the piezoelectric 

vibrations themselves are still linear. This is 

achieved by dividing the problem into two 

separate phases connecting three distinct states 

(rather than one phase connecting two states) as 

shown in Figure 2. 

Namely, the total displacement (��) as 
referenced from the natural state (stress-free at 

25°C) is divided into two parts, the initial 

displacement (��) and the incremental 

displacement (��): 
�� = �� + �� 

Similarly, total strain and total stress also have 

both initial and incremental parts: 

��� = ��� + ��� 
��� = ��� + ���  

The initial displacement relates the natural state 

to the initial state, and the incremental 

displacement relates the initial state to the final 

state. 

The initial displacement, strain, and stress 

include the effects of thermal strains and external 

tractions, and are represented assuming large 

deformations and nonlinear elasticity. The initial 

state does not include any piezoelectric effects, 

and is in that regard, a more traditional solid 

mechanics formulation. Thus, the constitutive 

equations for the initial state are that of the 

standard nonlinear Lagrangian formulation from 

the theory of elasticity, as follows from Lee and 



Yong [1], except that the degree of nonlinearity 

has been limited to only the lowest two degrees, 

as these are all that are defined for quartz. 

Large deformation strain-displacement: 

��� =
�
�
���,� + ��,� + ��,���,�� 

Nonlinear stress-strain: 

��� = 	����
� ��� +

�
�
	���� !
� ���� ! − "��

�  

Stress equation of motion: 

����� = ���� + �����,��,� in V 

Surface traction equilibrium: 

#� = $����� + �����,�� on S 
Here, ��, ��� , ��� , and %� are as previously 
described, 	����

�  and 	���� !
�  are the second- and 

third-order elastic stiffnesses (respectively), "��
�  

is the stress coefficient of temperature, #�  is the 
traction on a boundary surface with unit normal 

vector $�, and the superscript & denotes material 
properties that are functions of temperature. “In 

V” alludes to the fact that the partial differential 

equation is to be solved over the volume of the 

domain, while “on S” similarly corresponds to 

the boundary surface. It should be noted here that 

while 	���� !
�  is theoretically a function of 

temperature, the nature of this function (or 

equivalently, the “temperature derivative” of the 

third-order elastic coefficients) is unknown. 

Therefore in the current finite element algorithm, 

the third-order elastic coefficients are modeled as 

temperature independent. 

The final state is then governed by the 

superposition of the incremental displacement 

onto this initial state. However, the incremental 

quantities are governed by their own special 

equations. With the thermal strains and external 

tractions having been resolved in the initial state, 

the incremental displacement, strain, and stress 

take only the effect of piezoelectric vibrations. 

These vibrations can safely be assumed to be 

small deformations, and so the incremental 

equations are made linear during their derivation. 

(See Lee and Yong [1] for details of the 

derivation, and for full definitions of temperature 

dependant material properties.) 

Incremental strain-displacement: 

��� =
�
�
���,� + ��,� + ��,���,� + ��,���,�� 

Incremental piezoelectricity, stress-charge form: 

��� = '	����
� + 	���� !

� � !(��� − 	����
� �� 

�� = ����
� ��� + ���

��� 
Incremental equation of motion: 

���� � = ���� + �����,� + �����,��,� in V 

Incremental surface traction equilibrium: 

�� = $����� + �����,� + �����,�� on S 
Gauss’s Law for an insulator: 

��,� = 0 in V 
Note that three initial terms ��,�, � !, and ��� 
(the initial displacement derivative, initial strain, 

and initial stress, respectively) appear in the 

incremental equations. This is paramount for 

designing a finite element algorithm around the 

incremental method for two reasons. First, the 

presence of these three terms dictates that the 

initial state must be completely solved before 

attempting to define the final state via the 

incremental equations. Taking this sequence into 

account, the three initial terms can therefore be 

seen as field variables with known values at each 

point in the continuum when the incremental 

equations are solved. Secondly, the terms and 

equations themselves denote exactly how those 

initial results factor into the incremental model.  

 

3. Use of COMSOL Multiphysics 

 
Knowing the theoretical framework provided 

by the incremental method previously described, 

a corresponding algorithm within the COMSOL 

Multiphysics environment is developed. 

COMSOL is uniquely suited to perform this task 

for several reasons. First, COMSOL provides in 

its default form simplified building blocks for 

Figure 2: The three states of the incremental method [1] 



constructing the incremental method, being the 

solid mechanics and piezoelectric interfaces. 

Furthermore, COMSOL allows those 

fundamental configurations to be examined and 

changed, allowing the user to bring in the 

additional complexities that the incremental 

method requires. Lastly, the COMSOL 

environment provides not only finite element 

models, but the post-processing and global scope 

to tie these models together into a single, unified 

algorithm that encompasses the entire 

incremental method from start to finish. 

Knowing this, one can compare the initial 

equations to the incremental equations and 

deduce that an algorithm for the complete 

incremental method must include two separate 

finite element models, the initial model and the 

incremental model, each with its own governing 

expressions. The initial governing equations very 

closely resemble those of the Thermal Stress 

interface, while the incremental equations most 

directly correspond to the Piezoelectric Solid 

interface. Using these defaults as a template, 

each is modified to reflect the governing 

equations previously described, and the result is 

referred to as the Nonlinear Stressed 

Homogeneous Temperature (NSHT) Algorithm 

depicted in Figure 3. Although a full time-

dependent simulation would be supported by 

these same equations, this study is only 

concerned with predicting the resonant frequency 

of the piezoelectric vibrations in the oscillator, 

and thus an eigenfrequency solution of the 

incremental model is most computationally 

efficient. 

Note that the algorithm is nonlinear in a 

finite element sense because of the nonlinear 

elasticity equations in the initial model. 

COMSOL automatically accounts for this 

nonlinearity and iterates for convergence 

accordingly, as shown in Figure 3. Some 

simplifications can be made on this most general 

scheme if, for instance, thermal strains are much 

higher in magnitude than elastic strains, or if the 

resonator is in a state of homogeneous stress-free 

thermal expansion. These simplifications are not 

applicable for the combined high temperature, 

high pressure case however, and so are not 

expounded further. 

 

4. Results 
 

After satisfactorily benchmarking the 

Nonlinear Stressed Homogeneous Temperature 

(NSHT) Algorithm to various experimental 

frequency-temperature and frequency-stress 

Figure 3: Nonlinear Stressed Homogeneous Temperature (NSHT) Algorithm 



trends, (the former including Bechmann et al. [3] 

and the latter including EerNisse [4]), the 

algorithm was used to solve for the temperature- 

and pressure-dependent resonance of a 

commercially available quartz pressure sensor, 

shown in Figure 1. This sensor has the geometry 

of a cylindrical casing surrounding a centrally 

located circular resonator. The casing, formed by 

two hermetically sealed end caps, mechanically 

serves to actuate the state of hydrostatic pressure 

on the exterior as a non-uniform biaxial 

compressive stress across the interior AT-Cut 

resonator plate. This stress measurably 

influences the resonant frequency of the 

resonator, and thus external pressure can be 

assumed from a given frequency. 

Although nominally referred to as a 

"pressure" sensor, such a device does have a 

considerable temperature response and is thus 

technically a temperature-pressure sensor. 

Therefore to measure both in a down-hole 

application, an independent temperature 

measurement must also be made. It is likewise 

imperative that the algorithm be able to output 

both the pressure and temperature response of 

the "pressure" sensor, as this allows the 

simulation to predict how easily the two 

responses can be separated for a given pressure 

sensor design. 

After the simulation was ran for temperature 

ranging from 50°C to 200°C and pressure from 

14 psi to 20,000 psi, the results from the NSHT 

Algorithm were then compared to two sets of 

actual experimental baseline frequency data for 

the same sensor design. Such a data set includes 

one dependent variable (relative frequency in 

parts per million) as a function of two 

independent variables (temperature and 

pressure). While this data would be most directly 

conveyed as a 3D surface or carpet plot, such a 

representation is not desirable for comparing the 

algorithm against the experimental baseline. One 

alternative is to take 2D slices of these surfaces 

that can be of either constant temperature 

(isothermal) or constant pressure (isobaric). The 

former approach results in the plots shown in 

Figure 4 and Figure 5. Note that frequency data 

is normalized to the frequency at 50°C and 14 

psi for the calculation of frequency shift in parts 

per million. 

Correlation between the experimental data 

and the simulation is fairly good overall, with the 

major experimental trend being mirrored in the 

output of the algorithm. For the isothermal plots 

the pressure response is linear, and the slope of 

the line in the simulation is near the experimental 

slope, especially at low temperatures. At higher 

temperatures however, the experimental slope of 

the pressure response decreases while the 

simulation's slope increases slightly. This results 

in the simulation's error compared to 

experimental values growing from 7.52% at 

50°C and 20,000 psi to 25.65% at 200°C and 

20,000 psi, as noted in Figure 4 and Figure 5. 

 

5. Conclusions 
 

It is this second-order experimental change in 

the first-order trend, like the decreasing slope of 

Figure 4: Isothermal simulation results; T = 50°C 

Figure 5: Isothermal simulation results; T = 200°C 



the pressure response with increasing 

temperature, where the current model shows 

little correlation. It is known that the third-order 

elastic coefficients of stiffness are the gateway to 

the frequency shifts due to a stress bias [6]. In 

other words, the nonlinear elastic terms control 

the pressure response of frequency. Therefore, in 

order for the pressure response to change 

accurately with temperature, the inputted third-

order elastic coefficients also need to change 

accurately with temperature in the material 

definition. The accurate change of the third-order 

elastic coefficients is, of course, given by their 

temperature derivatives. Unfortunately, these 

temperature derivatives are not currently known. 

This leads to the nonlinear elasticity terms being 

modeled as constants, which in turn generates 

inaccuracies in pressure response as the 

temperature is increased away from the reference 

temperature of 25°C. 

In all, the developed NSHT Algorithm for 

applying the incremental method within 

COMSOL is shown to provide some degree of 

accuracy for predicting the frequency response 

of quartz pressure sensors, especially around 

either ambient temperature or ambient pressure. 

Furthermore, seeing the potential for the possible 

benefit of implementing the third-order elastic 

coefficients as functions of temperature should 

aid future researchers in deciding if defining 

their full anisotropic temperature derivatives is a 

worthwhile undertaking. Doing so would 

definitely make the current model more acute to 

some degree, and improve the simulation’s 

ability to meet the complex design challenges 

posed for quartz sensors in extreme 

environments. 
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