FEM Simulation of Interdigitated Electrode Device

S. Deshpande¹, S. Bhand², G. Bacher¹

1. Department of EEE, BITS Pilani K K Birla Goa Campus, Zuarinagar, Goa, India

2. Department of Chemistry, BITS Pilani K K Birla Goa Campus, Zuarinagar, Goa, India

INTRODUCTION:

- Micro/Nano technology facilitated has \bullet miniaturization of devices for many applications such as biosensing [1].
- Interdigitated electrodes (IDEs) are widely reported \bullet in many applications due to its rapid response and high sensitivity [2].
- Geometrical parameters such as width(w), gap(g),

RESULTS:

length(L) and non-dimensional parameter such as metallization ratio (η) these parameters are crucial to ensure high sensitivity.

Figure 3. Electric field displacement of IDEs device

Metallization Ratio	Normal Mesh (Capacitance in pF)	Adaptive Mesh (Capacitance in pF)
0.3	2.4797	2.4550
0.5	3.4146	2.9962
0.6	4.7435	3.9313
0.7	6.4641	4.9159

Table 1. DC capacitance of IDEs device with normal and adaptive mesh for variation in metallization ratio

Figure 1. Modelling of IDEs device using COMSOL® With W=10 μ m,G=10 μ m,and L=300 μ m

COMPUTATIONAL METHODS:

- The FEM modelling was carried out by COMSOL Multiphysics[®] 5.4.
- Electrical characterization was carried out using \bullet Electrostatics interface of the AC/DC Module.
- Simulations were performed using normal mesh as \bullet well as adaptive mesh refinement (AMR).
- The analytical expression as shown in equation 1 is \bullet used to evaluate capacitance of IDEs device [3].

 $C = (N - 3)\frac{C_i}{2} + 2\frac{C_i C_e}{C_i - C_e}$ (1)

Figure 4. The effect of metallization ratio on Penetration depth of IDEs device with variation in electrode fingers

Figure 5. The effect of metallization ratio on IDEs device performance

CONCLUSIONS:

- Numerical Simulation of IDEs for different number of electrode fingers and metallization ratio were investigated.
- Metallization ratio of 0.5 to 0.7 is found to be optimum for better IDEs device performance.
- Numerical simulation showed better average element quality in adaptive mesh (0.89) over normal mesh

Figure 2. Meshing sequence for IDEs device a. Normal mesh b. Adaptive mesh

ACKNOWLEDGEMENT:

This work is funded by Additional competitive grant GOA/ACG/18-19/Oct/13 BITS Pilani.

REFERENCES:

- 1. M. Bäcker et al., Planar and 3D interdigitated electrodes for biosensing applications: The impact of a dielectric barrier on the sensor properties, Phys. Status Solidi Appl. Mater. Sci., vol. 211, no. 6, pp. 1357-1363,2014
- 2. A. Rivadeneyra, J. Fernández-Salmern, J. Banqueri, J. A. López Villanueva, L. F. Capitan-Vallvey, and A. J. Palma, A novel electrode structure compared with interdigitated electrodes as capacitive sensor, Sens. Actuators B Chem., vol. 204, pp. 552-560, 2014
- 3. R. Igreja and C. J. Dias. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure, Sens. Actuators A Phys., 112, no. 2-3, pp. 291-301, 2004

Excerpt from the Proceedings of the 2019 COMSOL Conference in Bangalore