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Introduction
Modelling of Passive and Active Current Transformers

Purpose:

Support the design process by
predicting the influences of

= nonlinearities of the magnetization
curve (initial permeability,
saturation, ...)

- special core and winding
geometries (air gaps, partial
windings, asymmetries, ...)

- external and internal stray fields

- eddy currents (both in the core and
in the windings)

- magnetic hysteresis

- coupling to electric circuits
(transient response)

- thermal effects

ls in large current and frequency
operating ranges

TECHNISCHE ¢ %%
2010-11-17 | Slide 3 @ UNIVERSITAT
DRESDEN



Challenges with FE-Modelling

Combination of requirements:

- 3D geometry (potentially with low symmetry)

- Scale range typically > 100:1 (e.g. air gap / transformer size)
- Magnetic material with (strongly) nonlinear characteristic

- Presence of both injected and induced currents

- Coupling to electric circuits (may be nonlinear as well)

- Transient analysis required

- Numerical stability in wide amplitude and frequency ranges
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Simulation with COMSOL Multiphysics
Test Model

~—— = Square-shaped magnetic
Air gap\ core frame with central hole
of 3.5 cm width and two

- \ different types of air gaps
. 2% }- Partial air gap (fu” and partial)

AL |
& K - Bus-bar type bulk primary
e § \Non linear ferro- Cu-conductor (N1 = 1)

Primary winding

magnet/bc e
3\ - Secondary winding
A S SurrW (N2 = 1000) Spllt into two

linear box-shaped sections

- Boundary condition
“Magnetic insulation” on
outer cylinder surfaces
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Magnetic Core
Material Characteristic
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H(B) [A/m]

1000 1200

0 2 4 6 8 10 12 14

- FeSi;-type magnetic material

(M90-23P; .. = 50,000)

= Nonlinear characteristic

- Extrapolation with i, 4x=1 up

to very high fields for a stable
convergence of the solution

- Transient 3D quasi-static

magnetic problem: induction
currents mode (emqa: vector
potential A is dependent variable)

+ = H=A{(|Bl|)eg

(table in the materials/
coefficients library)
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Secondary Winding
Current Distribution
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- Winding sections composed of 2 x 4

prismatic elements

- Secondary current implemented as

a locally constant external current
density:

, N i,(1t)
Ji(t) = €
A

c€C

- Continuity preserved at the 45°

interfaces of the prismatic elements

- Injection of a locally constant

primary external current density
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Secondary Winding

Calculation of the Output Voltage

Ve =R "1, —

SE€C
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- E,: amplitude of the electric

field component in the
direction of the current
density in k' domain
(i.e., E, = Ex_emqa or
E,=Ez_emqa)

- Calculation of K, implemen-

ted by defining Ex_emqa
and E, = Ez_emqga as
integration coupling varia-
bles in the respective
subdomains.
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Electric Circuit
Coupling to a Spice Model

Ryvimen 41 - I1source 0 1 sin(0 1000 50)
= RprimExt 1 2 1

-« X120 primFEM

- X2 3 0 secFEM

- RsecExt30 1

- .SUBCKT primFEM Vprim i1 COMSOL.: *

primExt

p}mn<é :

FE model

- Currents and voltages of the FE-
model are linked to the primary and  ° .ENDS

secondary eleatric cireuls . .SUBCKT secFEM Vsec i2 COMSOL: *

- Transformer here operated in
passive mode (without electronic = . ENDS
feedback)
- .END

- More complex circuit model could
be used as an alternative
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Settings

||« Coarse mesh with element
type “Vector—Linear”

- 14613 degrees of freedom

- Solver: Time dependent

- Time range: 60 ms
(3 signal periods)

- Linear system solver:
Direct (3.5: PARDISO,
4.0: MUMPS, PARDISO,
SPOOLES)

- Solution time: 210 ... 440 s*
(PC with Intel Core2 Quad
CPU 2.40 GHz, 8 GB RAM)

*) dep. on tolerance settings
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Results of the Transient Simulations
Primary and Secondary Currents

1000

= Primary current
(1000 A, 50 Hz)

1 — T T - Resulting secondary

ot 5 current of a “bad” current
transformer (1:1000)
showing

- Initial transient response

= Current error

0 0.01 0.02 0.03 0.4 0.05 0.06

el - Phase shift
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Instantaneous Flux Density Distribution
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Time=0.055 Slice: Magnetic flux density, norm [T]

Time=0.06 Subdomain: Magnetic flux density, norm [T]
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- Influence of demagnetizing

fields from the full air gap
(top) and the secondary
windings at i;(t) = iy pay

still high induction level
close to the partial gap
(right) resulting from the

phase shift of secondary

current

(B: absolute value)

- Snap-shot at i;(t) = 0 with
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Influence of Stray Fields

% Figure 1 - COMSOL
HERTH PLHH|E 4

b o
e

- Even at times when the magnetization current is zero there may be
still high local induction levels due to stray fields from the air gaps.

- Stray fields may cause bandwidth limitations and local losses
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Stray Field Distribution

- Stray field distribution at zero
magnetization current
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Conclusions
Experiences with 3D Transient Magnetic Simulations

- 3D transient FEA with COMSOL and Spice coupling is
helpful in the design and for a better understanding of
electro-magnetic systems which exhibit

- more complex core and winding geometries

- magnetic components with nonlinear materials
- coupling to external and internal stray fields

= coupling to electric circuits

- Going from 2D to 3D modelling can be tricky, especially if
combined with

= nonlinearities
- a large scale range
- transient analysis
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Conclusions |l
Experiences with 3D Transient Magnetic Simulations

In order to obtain
- numerical stability and fast convergence of the solution

- broad accessible operation ranges (up to magnetic
saturation and high frequencies)

- numerical robustness with respect to geometry and
material variation

care has to be taken with respect to

- geometry modelling (avoid curved faces and too many
details)

- meshing and element type (avoid inverted elements
and high number of DOF)

- solver selection and settings
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Outlook
Planned Improvements

- Numerical stability in extended parameter ranges
- Consideration of eddy current effects (currently suppressed)

- Electrical circuits with higher complexity (e.g. electronic
feedback)

- Thermal coupling
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Thank You!

» Questions?
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