

Thomas Bödrich¹, Holger Neubert¹, Rolf Disselnkötter²

Transient Finite Element Analysis of a Spice-Coupled Transformer with COMSOL-Multiphysics

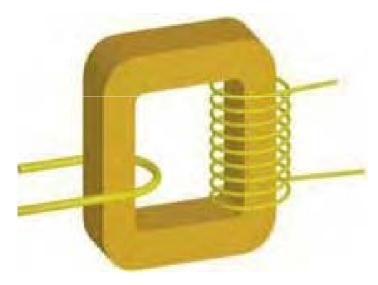
Outline

Introduction

Transformer Modelling

- Magnetic test model
- Coupling with Spice
- Settings

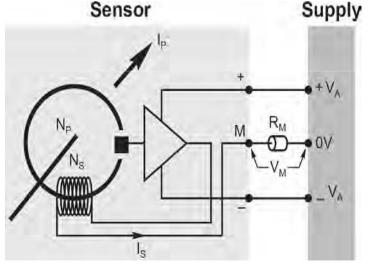
Results


- Transient signals
- Flux density distribution
- Stray fields

Conclusions

Outlook

Introduction Modelling of Passive and Active Current Transformers



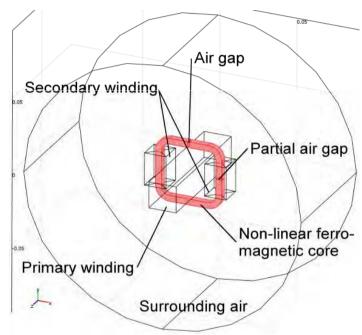
Purpose:

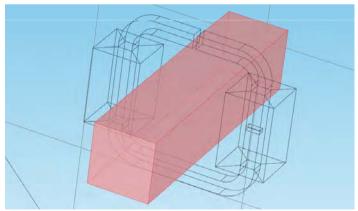
Support the design process by predicting the influences of

- nonlinearities of the magnetization curve (initial permeability, saturation, ...)
- special core and winding geometries (air gaps, partial windings, asymmetries, ...)
- Supply external and internal stray fields
 - eddy currents (both in the core and in the windings)
 - magnetic hysteresis
 - coupling to electric circuits (transient response)
 - thermal effects

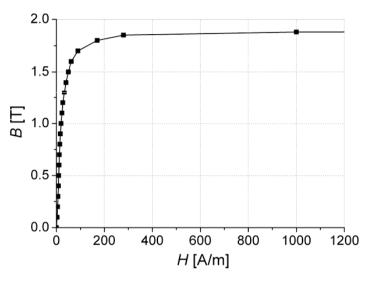
in large current and frequency operating ranges

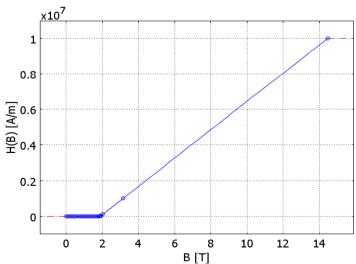
Challenges with FE-Modelling


Combination of requirements:


- 3D geometry (potentially with low symmetry)
- Scale range typically > 100:1 (e.g. air gap / transformer size)
- Magnetic material with (strongly) nonlinear characteristic
- Presence of both injected and induced currents
- Coupling to electric circuits (may be nonlinear as well)
- Transient analysis required
- Modelling of eddy currents (suited mesh required)
- Modelling of magnetic hysteresis
- Bidirectional thermal coupling
- Numerical stability in wide amplitude and frequency ranges

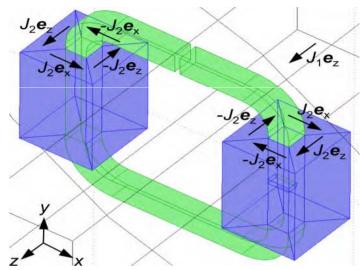
Simulation with COMSOL Multiphysics Test Model

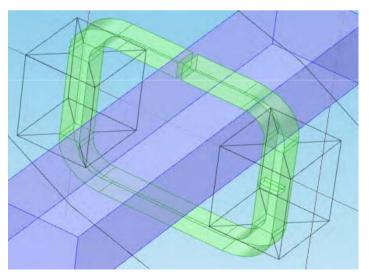




- Square-shaped magnetic core frame with central hole of 3.5 cm width and two different types of air gaps (full and partial)
- Bus-bar type bulk primary Cu-conductor (N₁ = 1)
- Secondary winding (N₂ = 1000) split into two linear box-shaped sections
- Boundary condition "Magnetic insulation" on outer cylinder surfaces

Magnetic Core Material Characteristic




- FeSi₃-type magnetic material (M90-23P; μ_{max} ≈ 50,000)
- Nonlinear characteristic
- Extrapolation with $\mu_{r \text{ diff}} = 1$ up to very high fields for a stable convergence of the solution
- Transient 3D quasi-static magnetic problem: induction currents mode (emqa: vector potential A is dependent variable)
- \Rightarrow $H = f(|B|)e_B$ (table in the materials/coefficients library)

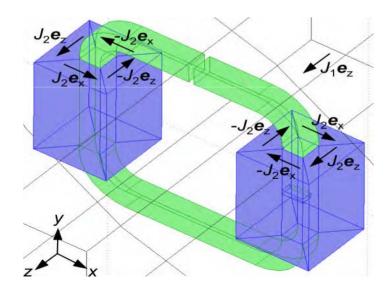
Secondary Winding **Current Distribution**

- Winding sections composed of 2 x 4 prismatic elements
- Secondary current implemented as a locally constant external current density:

$$\mathbf{J}^{e}_{2i}(t) = \frac{N \ i_{2}(t)}{A_{\text{sec}}} \cdot \mathbf{e}_{i}$$

- Continuity preserved at the 45° interfaces of the prismatic elements
- Injection of a locally constant primary external current density

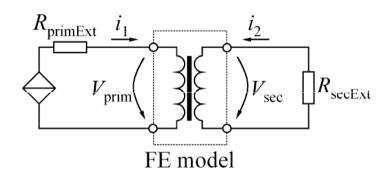
$$\mathbf{J}^{e}_{1}(t) = \frac{i_{1}(t)}{A_{\text{prim}}} \cdot \mathbf{e}_{z}$$



Secondary Winding Calculation of the Output Voltage

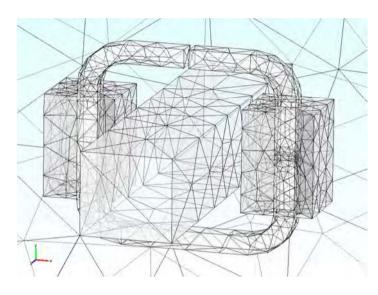
$$V_{\text{sec}} = R_{\text{coil}} \cdot i_2 - V_{\text{i}}$$

$$V_{i} = \int_{l} \mathbf{E} \, d\mathbf{l} = \frac{N}{A_{\text{sec}}} \cdot \sum_{k=1}^{8} K_{k}$$


$$K_k = \int_{V_k} E_k \, dV \quad (k=1, 2, ..., 8)$$

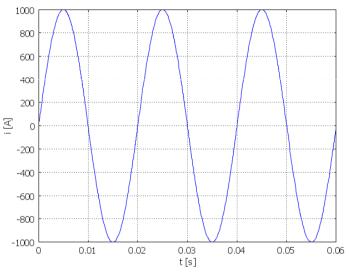
- E_k: amplitude of the electric field component in the direction of the current density in kth domain (i.e., E_k = Ex_emqa or E_k = Ez_emqa)
- Calculation of K_k implemented by defining Ex_emqa and E_k = Ez_emqa as integration coupling variables in the respective subdomains.

Electric Circuit Coupling to a Spice Model

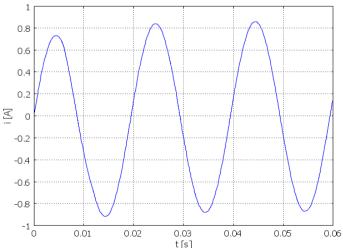

- Currents and voltages of the FEmodel are linked to the primary and secondary electric circuits
- Transformer here operated in passive mode (without electronic feedback)
- More complex circuit model could be used as an alternative

- I1source 0 1 sin(0 1000 50)
- RprimExt 1 2 1
- X1 2 0 primFEM
- X2 3 0 secFEM
- RsecExt 3 0 1
- SUBCKT primFEM Vprim i1 COMSOL: *
- .ENDS
- .SUBCKT secFEM Vsec i2 COMSOL: *
- .ENDS
- .END

Settings

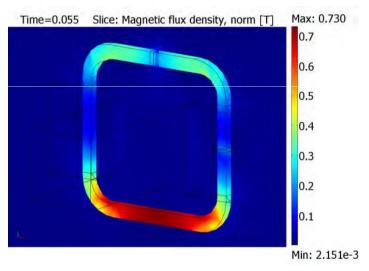

- Coarse mesh with element type "Vector–Linear"
- 14613 degrees of freedom
- Solver: Time dependent
- Time range: 60 ms
 (3 signal periods)
- Linear system solver:
 Direct (3.5: PARDISO,
 4.0: MUMPS, PARDISO,
 SPOOLES)
- Solution time: 210 ... 440 s* (PC with Intel Core2 Quad CPU 2.40 GHz, 8 GB RAM)

^{*)} dep. on tolerance settings

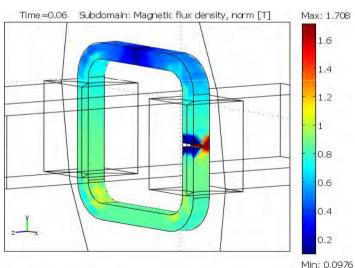


Results of the Transient Simulations Primary and Secondary Currents

 Primary current (1000 A, 50 Hz)

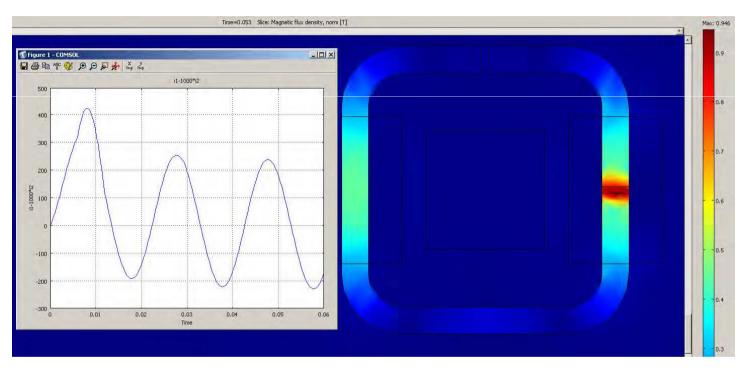


- Resulting secondary current of a "bad" current transformer (1:1000) showing
 - Initial transient response
 - Current error
 - Phase shift

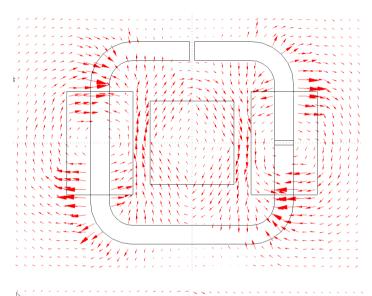


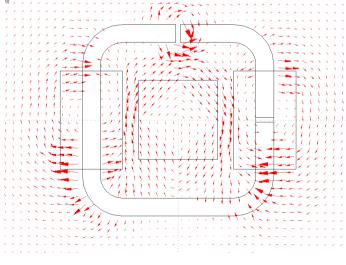
Instantaneous Flux Density Distribution

 Influence of demagnetizing fields from the full air gap (top) and the secondary windings at i₁(t) = i_{1,max}


 Snap-shot at i₁(t) = 0 with still high induction level close to the partial gap (right) resulting from the phase shift of secondary current

(B: absolute value)


Influence of Stray Fields


- Even at times when the magnetization current is zero there may be still high local induction levels due to stray fields from the air gaps.
- Stray fields may cause bandwidth limitations and local losses

Stray Field Distribution

 Stray field distribution at zero magnetization current

 Stray field distribution at maximum primary current

Conclusions Experiences with 3D Transient Magnetic Simulations

- 3D transient FEA with COMSOL and Spice coupling is helpful in the design and for a better understanding of electro-magnetic systems which exhibit
 - more complex core and winding geometries
 - magnetic components with nonlinear materials
 - coupling to external and internal stray fields
 - coupling to electric circuits
- Going from 2D to 3D modelling can be tricky, especially if combined with
 - nonlinearities
 - a large scale range
 - transient analysis

Conclusions II Experiences with 3D Transient Magnetic Simulations

In order to obtain

- numerical stability and fast convergence of the solution
- broad accessible operation ranges (up to magnetic saturation and high frequencies)
- numerical robustness with respect to geometry and material variation

care has to be taken with respect to

- geometry modelling (avoid curved faces and too many details)
- meshing and element type (avoid inverted elements and high number of DOF)
- solver selection and settings

Outlook Planned Improvements

- Numerical stability in extended parameter ranges
- Consideration of eddy current effects (currently suppressed)
- Electrical circuits with higher complexity (e.g. electronic feedback)
- Thermal coupling

Thank You!

• Questions?

