Presented at the COMSOL Conference 2010 Paris

NOVEMBER 17-19 2010, PARIS, FRANCE

Numerical Modeling of Thin Superconducting Tapes

Francesco Grilli¹, F. Sirois² and R. Brambilla³

¹Karlsruhe Institute of Technology, Karlsruhe, Germany
²Ecole Polytechnique Montréal, Montréal, Canada
³Ricerca sul Sistema Energetico - RSE S.p.A., Milano, Italy

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Goal of this presentation

Present issues of Show results obta Show results obta

Constitutive equations

• Faraday's law $\mu \frac{\partial B}{\partial t} + \nabla \times E = 0$ • Material properties for HTS $\begin{cases} \rho(J) = \frac{E_c}{J_c} \left| \frac{J}{J_c} \right|^{n-1} \\ B = \mu_0 H \end{cases}$

• Current density $J = \nabla \times H$

Equations in 2D

Francesco Grilli KIT-ITEP

Implementation in general PDE system Η x X

Very important feature: edge elements

- Physics: we want *div(B)=0*
- $\blacksquare B = \mu_0 H \twoheadrightarrow div(H) = 0$
- Comsol's curl elements shcurl
 - Not only do they impose div(H)=H1x+H2y=0
 - They also impose H1x=0 and H2y=0
 - Much more stringent condition than that obtained with Lagrange elements

$$\begin{cases} \mu \frac{\partial H_x}{\partial t} + \frac{\partial E}{\partial y} = 0 & \text{Take } x\text{-derivative} \\ \mu \frac{\partial H_y}{\partial t} + \frac{\partial E}{\partial x} = 0 & \text{Take } y\text{-derivative} \end{cases}$$

$$\mu \frac{\partial}{\partial t} \left(\frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} \right) = 0$$

 $\nabla \cdot H = \text{constant}=0$

Comsol Conference, 17-19 November 2010, Paris, France

Francesco Grilli KIT-ITEP

Mesh issues

- Aspect ratio 1,000-10,000
- Large number of mesh elements, even with a 'coarse' mesh

Possible solution: increase the thickness

- Increase the thickness, keep I_c constant
- Justification: flux penetration as in infinitely thin tape
- Tape behaves as a 1-D object

Possible solution: increase the thickness

- It works well for an isolated tape
- What happens in case of interacting conductors?
 - Top/bottom losses become important (depend on actual thickness)
 - Expanded thickness may become comparable with tape separation

Fig. 4 Values of transport AC losses versus the thickness of the tape. Data shown with transport currents of 50 A, 100 A, and 150 A. The I_c in this case is 120 A. The first point on each line is calculated using the actual geometry of the tape (1 μ m). The errors between the first point and other points in each line are shown

Fig. 6 Values of magnetisation AC losses versus the thickness of the tape. Data shown with the applied field of 2 mT, 4 mT, and 8 mT. The I_c in this case is 120 A. The first point on each line is calculated using the actual geometry of the tape (1 μ m). The errors between the first point and other points in each line are shown

Figures taken from Hong and Coombs, J. Supercond. Nov.Magn., 2010

First International Workshop on Numerical Modeling of High-Temperature Superconductors Lausanne, Switzerland, May 5-7, 2010 Francesco Grilli KIT-ITEP

Another solution

- Use elongated quadrangular elements (Rodriguez-Zermeno, # 6765)
 - Elongation allows reducing number of DOFs
 - For a 1-D description of the tape, 1 element along the thickness is enough
- Successfully applied to the simulation of a Roebel cable

Magnetization losses

- Magnetic field distribution in 2 stacks of 7 tapes
- Representative of the (2-D) cross section of a Roebel cable

- Magnetic field distribution in 2 stacks of 7 tapes
- Representative of the (2-D) cross section of a Roebel cable

- Standard triangular mesh
 - 280,000 elements, 450,000 DOFs, several days
- Elongated quadrilateral elements
 - 23,000 elements, 36,000 DOFs, a few hours
- Very important for design optimization

Magnetic field distribution in 2 stacks of 7 tapes

Representative of the (2-D) cross section of a Roebel cable

Conclusion

- H-formulation implemented in COMSOL's PDE General Form module to compute J and H profile and ac losses in HTS
- Very flexible
- Use 1st order curl elements
 - Ensure *divB*=0
 - Keep the number of DOFs at a reasonable level
- Use elongated quadrilateral elements for thin conductors
 - Lower number of mesh nodes with respect to standard triangular elements
- Method applied to simulate Roebel cable

Ac loss calculation $P(t) = \int_{T} \int_{S} J \cdot E dS$ How many cycles?

