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Abstract— Capillary - tissue fluid exchange is controlled by
the blood pressure in the capillary and the osmotic pressure of
blood (pressure of the tissue fluid outside the capillaries). In
this paper, we develop a mathematical model to simulate the
movement of bacteria into and within a capillary segment. The
model is based on Fokker-Planck equation and Navier-Stocks
equations that accounts for different boundary conditions.
Also, we model the transportation through capillary walls by
means of anisotropic diffusivity that depends on the pressure
difference across the capillary walls. By solving the model with
a numerical method, it was possible to predict the concen-
tration of bacteria at points within the capillary. However,
numerical analysis consumes computational time and resources.
To efficiently simulate the bacterial clearance, we propose a
segmentation model that is based on breaking the capillary
network into smaller sections with pre-defined properties in
order to reduce the overall computational time. The proposed
model shows a great reduction in computational time and
provides accurate results when compared to the numerical
analysis.

I. INTRODUCTION

The capillary network is a complex-interconnected structure.
A single blood cell traveling from the arteriole to a venule via
a capillary bed passes through, on average in the respiratory
system, 40−100 capillary segments [1]. The cardiovascular
systems responsible of delivering blood to the tissue under
sufficient pressure to exchange materials. This is a two way
process, at which nutrients, Oxygen, and other materials are
carried to the tissue and cells during the outflow. On the other
hand, blood is returned along with the wastes of cellular
metabolism during the return flow.
There are three mechanisms whereby capillary exchange
can occur, diffusion, bulk flow, and vesicular transport. It
is necessary to have an accurate model for the capillary-
tissue exchange mechanism. This can be useful in many
applications such as understanding the dispersion of drug
particles, through vascular system, in human tissue [2], [3]
as well as understanding the behavior of bacterial dispersion
[4] and and the factors influencing its clearance [5], [6], [7],
[8].
Modeling the exchange process can be carried by means
of coupling the classical diffusion (Fick’s law) with
Navier-Stokes equations. However, for a small number of
particles, classical diffusion fails to introduce a satisfactory
representation of the particle dispersion. It has been
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observed that the patterns of drug dispersion in human
body organs exhibit certain irregularities (discontinuities)
which can not be modeled with Fick’s law of diffusion even
using anisotropic and nonhomogeneous diffusivity. In order
to accurately model the exchange process, we propose a
stochastic based model of the diffusion process based on
the well known Fokker Planck equation [9]. In order to
account for the different mechanisms whereby capillary
exchange can occur (diffusion and bulk flow), we model the
capillary walls with means of pressure-dependent anisotropic
diffusivity with slip conditions for the plasma flow inside
the capillary. The main advantage of this technique lies in
the fact that it accounts for both drift and random effects
such as Brownian motion which are not accounted for in
commonly used classical techniques based on Fick’s law
of diffusion. The extension to realistic geometry is straight
forward since it can be dealt with using Finite Element
Method.

This paper is organized as follows. First, we introduce the
flow model using Navier-Stokes equations. Next, we utilize
Fokker Planck equation with convection field to represent the
probability function of the position of a particle (i.e, single
bacteria) in the capillary-tissue region. Then, we compute the
probabilities of absorption and transmission (clearance) of a
single particle and utilize it to construct the segmentation
model. Finally, we compute the probability mass function
(PMF) of the total number of bacterial particles.

II. CAPILLARY BLOOD FLOW MODEL

Many attempts are done to study the motion of blood though
a capillary segment[10] – [13]. In this paper we present a
stochastic model for capillary exchange. First, we consider
a three dimensional circular cylindrical tube, representing
a capillary segment of radius R and finite length L with
permeable wall to promote fluid exchange across the wall.
The equations of momentum and continuity are given by
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ρ
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Excerpt from the Proceedings of the COMSOL Conference 2010 Boston
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Capillary specifications
L 1mm
R 1µm
ρ 1025kg/m3

µ 0.0015Ns/m2 at 37◦

partriole end 40mmHg
pvanule end 15mmHg
pi −6mmHg
ρc 25mmHg
ρi 5mmHg
Lc 28.6∗10−7cm/(s · cmH2O), cmH2O = 0.098KPa
φ 0 and 0.15

TABLE I: Capillary specifications.

where ρ is the plasma fluid density, µ is the viscosity, p is
the hydrostatic capillary blood pressure, and u is the velocity
vector.
The radial velocity ur is governed by Starling’s law which is
a mathematical model for fluid movement across capillaries,
given by

ur = K[(p− pi)− (ρc−ρi)] (3)

where, K is the filtration constant which is the product of
the capillary surface area (A) and the capillary hydraulic
conductance (Lc), i.e., K = ALc. pi is the hydrostatic inter-
stitial hydrostatic fluid pressure, ρc is the capillary oncotic
pressure (osmotic pressure of the plasma proteins), and ρi is
the tissue oncotic pressure (osmotic pressure of the proteins
in the interstitial fluid).
Note that, in the previous equation, [(p− pi)− (ρc − ρi)]
represents the net driving pressure for filtration. The cor-
responding boundary conditions are

φ
∂uz

∂ r
+uz = 0 at r = R (4)

ur =
Kµ
R

(
p

ρc−ρi + pi
−1) at r = R (5)

p = pa at z = 0 (6)

p = pv at z = L (7)

The boundary condition (7) is the Beavers and Joseph condi-
tion while (7) results from Starling’s law, where φ =

√
k/δR,

δ is the slip parameter and k is the specific permeability of
the poros medium. (7) reduces to the no-slip condition when
k = 0. Also, pa and pv are the pressures at the arterial and
venous ends, respectively.
We solve the above model using Finite Element package
(COMSOL Multiphysics) for a capillary segment with spec-
ifications defined in Table (I).
In Figure (1), we show the axial velocity field profile along
the radial direction at the center of the capillary. Observe
that the axial velocity increases as the slip coefficient (φ )
increases and vice versa. Moreover, it coincides with the no-
slip condition when φ = 0. In figure (2), we illustrate the
variation of axial velocity along the axis r = 0 for different
φ . It is observed that uz has a concave profile downwards
with a minimum around the center of the capillary segment.
In Figure (3), we show the pressure along the capillary
segment, observe that the blood pressure almost has a linear
relation with the capillary-segment length. The deviation

from linearity is due to the introduction of the permeable
wall condition in (7). This relation is very important in this
context and will be utilized in Section IV.
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Fig. 1: Axial velocity profile at z = L/2 for different slip
coefficients.
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Fig. 2: Axial velocity profile along the axis r = 0 for different
slip coefficients.

III. MODELING THE EXCHANGE PROCESS

In order to model the dispersion of particles through and
inside a capillary segment, let us assume that at an arbitrary
time t0 we introduce n0 (or equivalently concentration c0)
particles at location r0 being at the beginning of the capillary
segment. When the number of particles is large macroscopic
approach corresponding to the Fick’s law of diffusion is
adequate for modeling the transport phenomena. However,
to model the motion of the particles when their number is
small a microscopic approach corresponding to stochastic
differential equations (SDE) is required. The diffusion pro-
cess for the transport of particle in an open environment is
given by the itõ stochastic differential equation:

dXt = µ(Xt , t)dt +σ(Xt , t)dWt (8)

where Xt , in R3, is the location and Wt is a standard Wiener
process in R3.
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Fig. 3: Pressure profile along the axis z = 0 of a capillary
segment.

The function µ(Xt , t) is referred to as the drift coefficient
while σ() is called the diffusion coefficient such that in a
small time interval of length dt the stochastic process Xt

changes its value by an amount that is normally distributed
with expectation µ(Xt , t)dt and variance σ 2(Xt , t)dt and is
independent of the past behavior of the process.
Assuming three-dimensional environment r = (x1,x2,x3), we
compute the probability density function, f (r, t), of one
particle occupying space around r at time t using the Fokker-
Planck equation [9]

∂ f (r, t)
∂ t

=

[

−
3

∑
i=1

∂
∂xi

D1
i (r)+

+
3

∑
i=1

3

∑
j=1

∂ 2

∂xi∂x j
D2

i j(r)

]

f (r, t) (9)

where partial derivatives apply the multiplication of D and
f (r, t), D1 is the drift vector and D2 is the diffusion tensor
given by

D1
i = µ

D2
i j =

1
2 ∑

l

σ ilσT
l j (10)

In the case of anisotropic diffusivity, the diffusivity tensor is
defined by a 3×3 matrix. We can understand the geometry
of anisotropic diffusion by looking at the eigenvalue decom-
position of D.

D2 = XΛX−1 (11)

where X = [e1e2e3], ei are the eigenvectors of D2 and

Λ =





λ1 0 0
0 λ2 0
0 0 λ3



. λ1,λ2, and λ3 are the eigenvalues

of D2.

The eigenvalues are real, mutually orthogonal, and positive.
When λ1 = λ2 = λ3, the diffusion process is considered
isotropic and the observable contour of f (r, t) forms a sphere,

as explained previously. In general, the contour of f (r, t)
forms and ellipsoid with the following function

x2

λ1
2 +

y2

λ2
2 +

z2

λ3
2 = 1 (12)

For the bounded domain, (9) can be easily solved, numeri-
cally using following boundary conditions

f (r, t) = 0 for absorbing boundaries (13)

n̂ ·∇ f = 0 for reflecting boundaries (14)

where n̂ is the normal vector to the boundary.
The diffusion model does not only include the inner region
of the capillary, but also the surrounding tissues, the arterial
end, and the proceeding parts of the capillary network.
The coupling between the flow model and the diffusion-
convection equations is achieved by implementing domain
and boundary conditions as follows:
Domain Configuration

• Capillary inner domain: we use homogenous diffusivity
with a convection flux corresponding to the velocity
field, u, calculated in II, i.e., µ = u and D2 = DI3

• Capillary wall: only convection flux in the radial direc-
tion is considered with anisotropic diffusivity with the
eigenvalues λ1 = βcos(θ ), λ2 = β sin(θ ), and λ3 = 0
where β is a scaling factor that is a function of pressure
difference, i.e. β = sign(p−ρc). This representation of
the diffusivity tensor allows diffusion only in the radial
direction.

Boundary Configuration

• Capillary inner wall: we use the continuity condition.
• Capillary outer wall: we propose an absorbing boundary

condition to enforce absorbtion of all the particles
leaving the capillary to the surrounding tissues.

• Arteriole end: we assume a reflecting boundary in order
to prevent all particles from re-entering the arteriole.

• Venule end: we assume an infinite domain with conti-
nuity condition in between.

Then, the probability density function is calculated in the
proposed geometry using COMSOL Multiphysics. In Fig-
ure (4) we show the time evolution of the particle pdf inside
a capillary segment assuming that the particle starts moving
from the arterial end. In order to study the behavior of the
capillary network, we study two main probabilities:

1) PA: The probability of a particle to get absorbed into
the surrounding tissues.

2) PT : The probability of a particle to get transmitted to
the proceeding capillary network.

In Figure 4, we present PA as a function of time. Observe
that, the probability of absorbtion increases with time as the
particle moves along the capillary segment while reaches
an upper bound (saturation) as it moves to the rest of the
capillary bed (tsat ≈ 2 ∗ 10−5sec). The plot in Figure (9b)
shows the time function of PT . Similarly, the probability of
transmission reaches an upper bound as it moves to the rest



of the capillary bed. Moreover, PT shows a delay response
due to the time required by a particle to hit the venule end
of the capillary.
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Fig. 4: Evolution of the probabilities of absorption and
transmission of a single particle traveling from the arteriole
to a venule via a capillary segment.

IV. SEGMENTATION MODEL OF THE CAPILLARY

NETWORK

In this section, we propose a time efficient technique,
segmentation model (SM), to calculate the aforementioned
absorption and transmission probabilities (PA and PT , respec-
tively) which can be used for a complex capillary network.
The main idea of this technique is breaking the capillary
network into smaller sections with pre-defined properties in
order to reduce the overall computational time. Ahead, we
present the main steps to implement the proposed algorithm:

Step 1: discritization of the capillary into a large number
of smaller sections.

Step 2: calculating the PA and PT of each section as a
function of pressure.

Step 3: integrating over the capillary network.

First, we start by discretizing the previously introduced capil-
lary segment into n smaller sections, as shown in Figure (6).
Next, we calculate PAi and PTi , namely, the absorption and

(a) t=0 sec

(b) t=10−6 sec

Fig. 5: Evolution of f (r, t) inside a capillary segment.

transmission probabilities within the ith section, where i =
1, · · · ,n. This is done separately for each section under the
same conditions calculated in Section II, i.e., the pressure
along each section is set to the values corresponding to those
in Figure (3). The pressure at the beginning of ith section
is defined as pi−1 and its pressure drop is 4pi with p0 is
the maximum pressure at the arteriole end and pn is the
minimum pressure at the venule end. Also, we assume that
the diffusive particle starts its movement from the beginning
of each section.
In Figures (7 and 8), we illustrate the probabilities of
absorption and transmission, respectively, of each section
as a function of capillary blood pressure. The calculations
are done for n = 20 sections at 1.01µ sec. As expected,
PAi decrease as moving along the capillary segment since,
in principle, the absorption on the capillary walls depends
on the pressure difference across the wall which decreases
as moving towards the venule end. However, PTi shows a
minima near the middle of the capillary segment since it
mainly depends on the axial velocity of the blood which has
a minima near the middle of the capillary as well.
This discrete representation of the probabilities of each
section is very useful in calculating the total absorption or
transmission probabilities for a general capillary segment.
For better understanding of the importance of Figures (7 and
8) we show an example of calculating the total absorption
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and transmission probabilities for a capillary segment
consisting of n sections with known starting pressure and
length. Also, for simplicity, we assume that the section
length is equal to that presented in Figures (7 and 8). We
first define the different probabilities that will be used in
the example below.

PAi,t , the absorption probability of the ith section at time t
for a particle starting from the same section.

PAi
t , the absorption probability of the ith section at time t

for a particle starting from the 1st section.
PAi

tot,t , the total absorption probability of the sections 1, · · · , i
at time t for a particle starting from the 1st section.
PTi,t , the transmission probability of the ith section at time t
for a particle starting from the same section.
PTi

tot,t , the total transmission probability from the sections
1, · · · , i at time t for a particle starting from the 1st section.
Also, equal to PTi

t .

It can be shown that the total probabilities, of absorption and
transmission, for n sections at time tk are given by

PAn
tot,tk =

n

∑
i=1

PAi
tk (15)

PTi
tot,tk = PTi

tk =
k

∑
j=1

(PTi−1
tot,t j

−PTi−1
tot,t j−1

)PTi,t j (16)

where

PAi
tk =

k

∑
j=1

(PTi−1
tot,t j

−PTi−1
tot,t j−1

)PAi,t j (17)

In order to validate the proposed algorithm, we illustrate,in
Figure (9), the total absorption and transmission probabilities
for a capillary segment similar to the one studied previously
in Section III and compare our results to the results obtained
using the Finite Element solver. The capillary segment is
divided into 50 sections. It is obvious that the results obtained
using the segmentation model are very accurate and close
to those obtained by the Finite Element solver. Also, the
computational time required for implementing our model
(using MATLAB) is 7.8474∗10−4 sec which is greatly less
than the time required by the Finite Element solver (4.4 hrs).
Moreover, the segmentation algorithm can be easily used to
model complex capillary network since it can be divided into
smaller sections that will be later integrated.

V. MODELING THE EXCHANGE OF MULTIPLE PARTICLES

In this section we model the exchange probabilities (ab-
sorption and transmission) of multiple particles entering a
capillary network. Let n0 be the initial number of particles
entering a capillary network that has an absorbing and
transmission probabilities of PA,t j ≡ PAn

tot,t j
and PT,t j ≡ PTn

tot,t j
,

respectively. Hence, the probability that there are n absorbed
particles within the network at time t j becomes

P j(n) =

(
n0

n

)

Pn
A,t j

(1−PA,t j)
n0−n n = 1, . . . ,n0 (18)

Similarly, the probability that there are m transmitted parti-
cles within the network at time t j is

P j(m) =

(
n0

m

)

Pm
T,t j

(1−PT,t j)
n0−m m = 1, . . . ,n0 (19)

Finally, The joint probability of n absorbed and m transmitted
particles is given by
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Fig. 9: Comparison of the Finite Element and Segmentation
Methods in calculating PA and PT .

P j(m,n) =

(
n0

m

)(
n0−m

n

)

Pm
T,t j

Pn
A,t j

(1−PA,t j −PT,t j)
n0−m−n

(20)
where m+n = 1, . . . ,n0

VI. CONCLUSIONS

Oka and Murata [10] studied the steady motion of blood
through the capillary wall using a linear model of the blood
flow and utilizing Starling’s law, that is, the rate of flow per
unit area across the the wall boundary is directly proportional
to the pressure difference across the wall. However, Strivas-
tava [11] showed that the linearized model fails to give an
adequate representation of the flow field, especially in short
vessels. Oka’s linear model has been extended to the non-
linear case by Mariamma and Maghi [12]. They considered
the steady laminar flow of the blood as a homogeneous
Newtonian fluid in tube with permeable wall. Elshahed [13]
studied the effect of exchange of fluid across the capillary
wall on the flow of blood with slip velocity and proposed a
closed form the velocity fields. In this work, we solve the
set of equations provided by Elshahed numerically, in order
to compute the velocity field through the capillary.
In this paper we modeled the capillary exchange using
stochastic diffusion embedded into Newtonian flow of the
blood. To the best of our knowledge it is a first attempt
to model the exchange process in as a random, diffusive
process. As a consequence our model is more realistic with
respect to modeling of the absorption rate as it it take into ac-
count capillary size, velocity of blood flow and diffusivity of
a particular bacteria, drug, etc. In addition we demonstrated

ability to perform computationally intensive procedures in
an efficient way using segmented approach. The main focus
of future work should be experimental validation of the
proposed models.
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