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Abstract 
 
The main mechanisms of acoustic attenuation in 
lightweight fibrous porous materials are the 
dynamic viscous drag forces on the surface of the 
fibres, and the thermal heat transfer between the 
solid fibres and the surrounding fluid. 
Microstructure models have been recently 
developed which consider these micro-level 
interactions analytically [1], allowing the simulation 
of coupled acoustic and structural wave propagation 
through the three-dimensional, highly porous 
acoustic thermal insulation material using only the 
geometrical fibre properties, the constitutive 
properties of the solid fibre material and surrounding 
fluid, and the macroscopic elastic properties. A key 
assumption in this approach is that the fibre spacing 
is large enough such that the viscous and thermal 
dissipation fields surrounding the fibres should not 
significantly interact. In support of this new 
poroelastic model development, the thermoviscous 
acoustic fluid analysis capabilities of COMSOL 
have been utilized as a virtual laboratory, in order 
to assess the interaction of the coupled viscous and 
thermal boundary layers on a representative array of 
cylindrical fibres. 
 
Introduction 
 
Recent work into the characterisation of fibrous 
porous materials has strongly focussed on 
microstructural aspects, i.e. the fibre diameter 
distributions, fibre orientation angles, and the 
distributions of fibre lengths [2, 3] in order to predict 
the transport properties of the material. In practice, 
this means that a combination of numerical and 
experimental techniques are used to estimate the 
macroscopic transport properties of the fibrous 
material, such as static viscous and thermal 
permeabilities, viscous characteristic lengths, and 
high frequency tortuosity. Using this information, 
the vibroacoustic performance may then be 
simulated using established Biot-based poroelastic 
models [4], for example. Unfortunately, this 
approach often requires the assumption of an 
approximated pore structure, and either complex 
fluid flow and thermal diffusion simulations, 
existing material samples for laboratory 
measurements, or additional steps in order to predict 
acoustic performance. 

 
It would be much more convenient if the 
microstructural aspects of the fibrous material were 
taken into account analytically in the formulation of 
the governing poroelastic equations, meaning direct 
relationships between physical properties such as 
fibre diameter distributions and orientation angles, 
and resulting acoustic performance could be made in 
an efficient way. 
 
To address this, we have re-approached the problem 
at a fundamental level, intentionally independent 
from existing poroelastic theories. Firstly, by 
considering the fibrous insulation material as a 
control volume of infinite solid cylindrical fibres 
embedded within an infinite viscous fluid, the 
resulting force balance allows us to derive the 
governing solid and fluid momentum equations in 
terms of viscous drag forces arising from the relative 
motion between the solid and fluid phases. 
Secondly, we have considered that when waves 
propagate through the porous fibrous material, 
oscillatory heat flow between the thermal fields of 
the solid fibres and the surrounding viscous fluid 
results in a corresponding non-equilibrium thermal 
expansion of the fluid. This then leads to a set of 
modified stress-strain relations for the coupled solid 
and fluid phases, and of a scaled fluid dilatation term 
representing the non-equilibrium heat transfer 
effects.  
 
Fibre surface roughness and bonding between fibres 
are not considered in the viscous analysis. Viscous 
and thermal field interactions between neighbouring 
fibres are also neglected in the analytical 
expressions for viscous drag forces on the surface of 
the cylindrical fibres, and the heat transfer between 
the fibres and the surrounding viscous fluid. This 
means that the formulation is targeted at higher 
porosity materials having large spacings between 
fibres.  
 
A transfer matrix (TM) formulation of the resulting 
governing equations has allowed a comparison 
against impedance tube acoustic absorption 
coefficient measurements for a rigidly-backed finite 
material sample. The initial simulation results have 
proven to be very promising. Subsequent 
thermoviscous acoustic fluid finite element 
modelling in COMSOL has allowed us to then 
fundamentally investigate the viscous and thermal 
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boundary layer interaction within a regular array of 
fibres as a means of better understanding dominant 
physical mechanisms, and confirming the 
underlying assumptions in the model, i.e. that there 
is not significant interaction between the viscous and 
thermal boundary layers of neighbouring fibres. 
 
Material Definition 
 

  
Figure 1. SEM micrograph of Johns Manville Microlite 
AA glass fibre thermal insulation material. 20 
micrometre scaling. 
 
The porous material used for this development is a 
lightweight (10 kg/m3 bulk density), and flexible 
aircraft fuselage acoustical and thermal insulation 
from the Johns Manville Company, as shown in 
Figure 1. The solid fibre skeleton consists of a 
distribution of cylindrical glass fibres, having 
diameters ranging from 0.125 to 5.0 micrometres, 
with a mean fibre diameter of 1.28 micrometres, and 
standard deviation of 0.92 micrometres. 
 

  
Figure 2. Transversely isotropic fibre representation. 
 
The orientation of the fibres is assumed to be 
primarily transversely isotropic, with some fibres 
being orientated through the thickness of the 
material to provide structural integrity and 
compressional stiffness, as shown in Figure 2. A full 
description of the material, its microstructural, 
constitutive and elastic properties is provided in [1, 
5]. 
 
Microstructure Derived Poroelastic 
Equation Summary 
 
The governing coupled fluid-solid equations for this 
fibrous material are formulated using the 
assumption that the volume fraction is uniform 
throughout the solid, interconnected fibre skeleton; 
every plane cuts through a fraction f  of solid fibre 
per unit total area. It is also assumed that we do not 
have any pressure gradient forces at the fluid-fibre 

interfaces inside the control volume boundary. If the 
contents of the control volume are held constant, 
pressurising the fluid applies a compressive stress or 
dilatation of the solid fibre. Alternatively, if the 
control volume is held constant, applying a stress to 
the solid applies a pressure stress or dilatation to the 
fluid. This coupling between the solid fibres and 
surrounding fluid results in a set of stress-strain 
relations for the porous composite, which we 
assume to be transversely isotropic for the fibrous 
insulation material considered here. 
 
Momentum Equations 
 
Summarising the detailed formulation presented in 
[1], the equation of motion of the solid fibre skeleton 
(solid momentum equation) is written as  

 , (1) 

 
where are the components of the dynamic  
viscous drag force vector , which the skeleton  
exerts on the fluid per unit volume. The viscous drag 
force is a linear function of the solid strains and fluid 
displacements, given in the frequency domain in 
matrix form in terms of the relative motion between 
the two phases 
 
 , (2) 
 
where  is the spatially-averaged dynamic 
viscous drag force impedance matrix per unit 
volume [5], for a transversely isotropic fibrous 
material 

  . (3) 

 
The coefficients J, K, are defined in terms of the 
analytical axial and transverse viscous drag force 
impedances for an individual fibre 
 

  , (4) 

 

  , (5) 

 
and where the shear wavenumber of the infinite 
viscous fluid is . Note that the  
dynamic viscous drag force impedance matrix may 
be defined for isotropic, and fully anisotropic 
materials as well as for a distribution of fibre 
diameters and orientation angles. 
 
In a similar way, a momentum balance on the fluid 
phase of the porous material allows the equation of 
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motion of the fluid (fluid momentum equation) to be 
defined as 

  . (6) 

 
Non-Equilibrium Fluid Dilatation 
 
Under equilibrium conditions, stress and strain for 
any porous material are related by coupled 
constitutive stress-strain relations of the form 
 
 .  (7) 
 
When waves propagate in the porous fibrous 
material, assumed one-way heat transfer between 
the solid fibres and surrounding viscous fluid allows 
a thermal expansion of the fluid phase. This leads to 
an extension of the fluid dilatation terms away from 
equilibrium. Making use of the linearised entropy 
relations for a two-phase porous material, we can 
derive a new fluid dilatation expression [1], which is 
valid for non-equilibrium conditions 
 
  . (8) 
 
Here, the fluid pressure term is now scaled by the 
frequency-dependent coefficient c 
 

  , (9) 

 
where 

  , (10) 

 
and  is the effective thermal impedance function, 

  , (11) 

 
which is derived from the oscillatory thermal fields 
of the respective fluid and solid phases [6].  
   
Transfer Matrix Acoustic Simulations  
 
The complete description of coupled acoustic and 
structural wave propagation through the three-
dimensional porous material is then provided by 
Eqs. (1, 6 and 8), where the viscous dissipation and 
thermal heat transfer behaviour has been defined in 
terms of microstructure-based analytical 
expressions. It is then straightforward to define a set 
of wave equations, and formulate a transfer matrix  
(TM) representation of the model [1, 4].  
 
For validation purposes, we then consider plane 
acoustic wave propagation through a rigidly-backed 
finite thickness of the fibrous material, i.e. the 
standard acoustic impedance tube experiment. We 

have then used the material mean fibre diameter of 
1.28 micrometres, and a fibre inclination angle of 50 
degrees (from the xy plane) in the TM formulation 
to simulate the acoustic absorption behavior of a 50 
mm thickness of material sample and compared this 
to measurements, as shown in Fig. (3). 
 

 
Figure 3. Measured and simulated normal-incidence 
absorption coefficient. 
 
A very good agreement exists in the comparison 
between the numerical simulation and measured 
absorption coefficient across the entire frequency 
range. Material inertial and dissipative effects have 
been correctly represented in the simulation. 
 
The list of material properties used for the TM 
simulation are provided in [1], and they consist of 
only the geometrical microstructure parameters, the 
constitutive properties for air and glass at 20 deg. C., 
and the measured macroscopic elastic properties of 
the material. We will also present results for this 
material using an expanded set of fibre diameter 
distributions and orientation angles in future work.  
 
In addition, the analytical expressions for dynamic 
viscous drag impedance through the thickness of the 
material sample, as defined by Eq. (3), may also be 
scaled according to fibre diameter distributions and 
orientations to provide an estimate of the airflow 
resistance of the material (note that viscous drag 
force impedance and airflow resistivity have the 
same units). This is shown in Fig. (4), in the form of 
the low frequency (quasi-static) asymptote of the 
dissipative (real part) of . 
 

 
Figure 4. Dynamic viscous drag force impedance 
function. 
 
The through-thickness measured value of airflow 
resistivity for this material was 23400 Ns/m4, while 
the low frequency estimate provided by Eq. (3) was 
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22470 Ns/m4, which was again in very good 
agreement. 
 
Thermoviscous Acoustic Fluid Finite 
Element Modelling 
 
In the formulation of the coupled equations for 
acoustic-structural wave propagation through a 
fibrous porous material presented here, where the 
viscous and thermal dissipation mechanisms have 
been derived entirely from microstructural 
considerations, the underlying assumption is that the 
dynamic viscous and thermal fields surrounding 
individual fibres do not interact significantly with 
the fields of neighbouring fibres. In the worst case, 
low frequency estimate, acoustic boundary layer 
theory [7] states that the viscous and thermal 
boundary layer penetration depths, for air at 20 deg. 
C and at 1 Hz, will be approximately lvor = 2.2 mm 
and lth = 2.6 mm, which is clearly beyond the 
average fibre spacing of 18.052 micrometres 
existing within the material. 
 
Taken at face value, this would theoretically 
invalidate the assumptions inherent to the 
analytically derived viscous and thermal expressions 
in our formulation. 
 
To address this, we have utilized the thermoviscous 
acoustic fluid modelling capabilities in COMSOL as 
a virtual laboratory, in order to fully understand the 
behaviour of the viscous and thermal boundary 
layers on the surface of the fibres, and also to 
reasonably assess the interaction of the boundary 
layers within a representative statistical array of 
fibres. In this approach, the fluid surrounding the 
solid glass fibres is then represented as a 
superposition of coupled acoustic, vorticity and 
entropy modal fields [7]. 
 
Single Fibre Boundary Layers 
 

 
Figure 5. 2D oscillating cylindrical glass fibre embedded 
within a non-reflecting thermoviscous acoustic fluid. 
 
The first case of a sinusoidally oscillating elastic 
cylinder, embedded in a non-reflecting infinite 
thermoviscous acoustic fluid was considered in 
order to establish a validation case for the FE 
numerical procedure. As a reference, the analytical 

relation for transverse dynamic drag force 
impedance, Eq. (5) was used. 
 
The fluid region surrounding the fibre of mean 
diameter 1.28 micrometres was divided into two 
separate domains, an inner thermoviscous acoustic 
fluid one having a radius of 15 mm, which was then 
encased by a 5 mm thickness acoustic pressure field 
having a non-reflecting radiation boundary on the 
outer surface, as shown in Fig. (5). The excitation 
frequency was 1 Hz, and the fibre oscillation 
amplitude was chosen to be 0.01 micrometres in 
order to ensure linearity. 
 
For this single fibre model, a combination of linear 
pressure, and quartic velocity and thermal elements 
were used for the thermoviscous fluid and acoustic 
pressure regions, respectively. Quartic elastic stress 
elements were used for the stress field internal to the 
fibre, which was then coupled to the surrounding 
thermoviscous fluid region. The simplicity of 
axisymmetric conditions was not considered for the 
analysis, since the modelling approach would be 
later scaled up towards a rectangular grid of random 
fibre diameters, specified according to the known 
statistical fibre diameter distribution. The combined 
single-fibre model described here contained a total 
of approximately 12 million degrees-of-freedom 
(DOF). Extreme care was taken to ensure that the 
decaying waves radiating outwardly through the 
thermoviscous acoustic fluid from the fibre surface 
have not experienced any unwanted boundary 
reflections. 
 
Integrating over the fibre surface to estimate the 
traction forces, then allows the transverse dynamic 
viscous drag impedance per unit length values to be 
estimated. From the single fibre FE model. A value 
of 87642 Ns/m4 was found, which is within 0.02 
percent of the analytical result of 87665 Ns/m4 as 
predicted by Eq. (5). With respect to the numerical 
difficulties present when trying to model such 
microscopic geometries with non-reflecting 
propagating waves using finite elements, these 
results should then be considered as a very 
satisfactory validation of the numerical FE 
modelling procedure. 
 
The internal stress field within the cylindrical glass 
fibre has also been considered in the model. As 
expected, it was found that in this case, the large 
difference in bulk modulus between the surrounding 
thermoviscous fluid and solid glass fibre has led to 
negligible stress coupling between the two 
mediums. 
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Figure 6. Viscous dissipation density on the fibre surface. 
 

  
Figure 7. Thermal dissipation density on the fibre surface. 
 
Examination of the viscous and thermal power 
dissipation density fields, as shown in Figs. (6, 7), 
indicates the concentration of the viscous and 
thermal boundary layer intensity in the immediate 
vicinity of the fibre surface, at micro and nano-scale 
levels. Considering these fields radially in the x 
direction from the fibre surface, as shown in Figs. 
(8, 9), further demonstrates that even for the very 
low excitation frequency of 1 Hz considered here, 
there is a concentration of the boundary layers to the 
immediate vicinity of the fibre surface. Furthermore, 
the viscous boundary layer, which is responsible for 
most of the dissipation losses in the analytical 
model, has decayed approximately 98 percent at the 
position of the next neighbouring fibre, according to 
the known fibre spacing of 18.052 micrometres. 
This is significantly different than the 2.2 mm 
viscous penetration depth value at 1 Hz. 
 

  
Figure 8. Viscous dissipation in the x-dir. from the fibre 
surface. 
 

  
Figure 9. Thermal dissipation in the x-dir. from the fibre 
surface. 
 
Further examination of the viscous and thermal 
dissipation densities also highlights that the 
dissipative potential of the thermal boundary layer is 
orders of magnitude less than the dissipation of the 
viscous boundary layer. This corresponds with our 
poroelastic equation formulations, where dissipation 
in the model is represented in terms of viscous fluid 
drag forces, and structural damping losses within the 
solid fibre skeleton. Heat transfer in the model is 
then primarily responsible for a thermal expansion 
of the fluid only.  
 
The viscous boundary layer strength will increase 
with a reduction in fibre diameter, and will 
subsequently decrease with increasing fibre 
diameter, as shown in Fig. (10). 
 

  
Figure 10. Viscous dissipation density for the diameter 
distribution range. 
 
Here, the smallest, mean and largest fibre diameters 
from the statistical distribution are presented. The 
viscous dissipation potential of the nano-scale fibre 
geometries is shown to be significant, which would 
also apply to other classes of porous materials as 
well, such as foams with very fine strut diameters. 
 
Representative Multi-Diameter Fibre Array 
 
In order to investigate the significance of viscous 
and thermal boundary layer interaction between 
fibres, a more realistic case with a large distribution 
of fibre diameters was modelled. For this purpose, a 
model of an array of 225 fibres, uniformly 
distributed according to their diameter distribution, 
using the mean fibre spacing of 18.052 micrometers, 
was considered as schematically  
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Figure 11. 225 fibre array, with 18.052 micrometre 
spacing and respecting the diameter distribution. 
 
shown in Fig. (11). This model adds not only 
increased complexity due to a larger number of 
interacting fibres, it also incorporates the effects 
related to a variation of the fibre diameters in the 
array, for which the measured statistical distribution 
of diameters presented in [5] was incorporated. 
Using the verified single-fibre modelling procedure, 
the resulting FE model consisted of approximately 
35 million degrees-of-freedom, based on a refined 
modelling criteria as compared to the single fibre 
case. 
 
All fibres in the array were excited in-phase at a 
frequency of 1 Hz, and the fibre oscillation 
amplitude was chosen to be 0.01 micrometres in 
order to ensure linearity. This would correspond to 
a uniform rigid body motion of the entire material 
sample. The resulting viscous and thermal power 
dissipation density fields are shown in Figs. (12 and 
13) respectively.  
 

  
Figure 12. 225 fibre array viscous dissipation density. 
 

  
Figure 13. 225 fibre array thermal dissipation density. 
 
As a comparison, the arithmetic mean of the viscous 
drag force impedance function, as calculated using 

the analytical expressions proposed here, and using 
the same measured statistical distribution of fibre 
diameters, gives a value of 79527 Ns/m4. Integrating 
over the surfaces of all 225 fibres in the FE 
simulation, the arithmetic mean of the fibre reaction 
forces allowed the dynamic drag force impedance to 
be estimated as 78403 Ns/m4, which is accurate to 
approximately 1.1 percent. This was deemed to be 
sufficient, and allows us to reliably draw 
conclusions about the interaction of the viscous and 
thermal boundary layers within the fibre array.  
 

  
Figure 14. Viscous dissipation density in the x-dir. across 
the 225 fibre array. The origin is the central mean fibre 
diameter.  

  
Figure 15. Thermal dissipation density in the x-dir. across 
the 225 fibre array. The origin is the central mean fibre 
diameter. 
 
Considering these fields radially in the x direction 
from the central mean fibre diameter, as shown in 
Figs. (14 and 15), demonstrates that the viscous 
boundary layers maintain a uniqueness in amplitude 
around individual fibres as one moves across the 
fibre array. This suggests that for the known fibre 
spacing (18.052 micrometres) of the glass fibre 
insulation material considered, there is not a high 
level of boundary layer interaction to significantly 
impact the assumptions in the analytical model. This 
is also confirmed in the viscous drag force estimate 
comparison, where there is a very close comparison 
to the analytical solution, which is inherently based 
on the assumption of no field interaction between 
neighbouring fibres. 
 
The thermal boundary layers trend upwards in 
amplitude with each subsequent fibre, indicating a 
certain level of interaction between the fibres. The 
reason for this is the build-up of a thermal wavefront 
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along the fibres at the outer boundary of the array. 
The significance of this will be investigated further 
in future work. 
 
Conclusions 
 
In our recent work, we have developed a new set of 
dynamic equations of motion for elastic-framed, 
transversely isotropic, lightweight, highly-porous 
fibrous insulation materials based entirely on 
physical microstructure considerations. Viscous 
losses are included in the model through analytical 
expressions for the dynamic drag impedance of 
cylindrical fibres, in a form similar to Biot's 
permeability tensor. Non-equilibrium conditions are 
included in the fluid dilatation expressions to 
characterise heat transfer effects between the fibre 
skeleton and surrounding fluid. Fibre spacing (i.e. 
porosity), and distributions of diameter and fibre 
orientation angles are considered as the 
microstructural parameters. A transversely isotropic 
transfer matrix representation of the model has been 
developed, with the subsequent acoustic simulation 
of an impedance tube experiment providing very 
good agreement with measurements. 
 
The use of the Thermoviscous Acoustic Fluid 
modelling capabilities of COMSOL as a virtual 
laboratory tool, has proved invaluable in supporting 
these developments. 
 
The underlying assumptions of the model are such 
that the dynamic viscous and thermal boundary 
layers on the surfaces of the distributions of 
neighbouring cylindrical fibre orientations and 
diameters do not interact. Using the analytical 
dynamic viscous drag force expression for 
transverse fibre oscillations as a reference, we have 
validated an accurate COMSOL finite element 
modelling procedure to simulate the boundary layers 
on the surface of a single fibre. This approach was 
then scaled up to accurately model a random fibre 
array representative of the actual material diameter 
distribution. 
 
These modelling efforts have provided great insight 
into the controlling dissipation mechanisms within 
the fibrous insulation material, and has 
demonstrated that the assumption regarding no 
significant interaction of viscous shear and thermal 
boundaries between neighbouring fibres is valid for 
the high porosity glass fibre insulation investigated 
in this work. 
 
Our future work will now include a microstructural 
representation of the transversely isotropic elastic 
properties of the material. 
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