COMPREHENSIVE NUMERICAL MODELING OF FILAMENTARY RRAM DEVICE.

Dipesh Niraula and Victor Karpov
Department of Physics and Astronomy
The University of Toledo, Toledo, OH
dipesh.niraula@rockets.utoledo.edu

Research motivation: Bipolar resistive switching in RRAM

Statement of goal

- Develop a physics based numerical model of bipolar filamentary RRAM operation
 - independent of microscopic structure details
 - RRAM characteristics expressed through material parameters
 - I-V characteristics exhibiting ramp-rate and cycle-to-cycle variations

Showcasing our results

simulated I-V with ramp-rate and cycle-to-cycle variations

Outline

- Physics of Device operation
- Numerical Modeling
 - Program: Modules and Switching Condition
 - Device Model
 - Conduction Mechanism: Electric and Thermal
- Variability of RRAM parameters
 - Average ramp-rate dependent effects
 - Cycle-to-cycle Variations

Physics of Device operation:

device operation consists of Device States and Switching Processes

Device States ('0' or '1')

OFF– Insulating State:

No or Partial Filament, High Resistance, Low Current

ON– Conducting State:

Conducting Filament, Low Resistance, High Current

Switching Processes (Write/Erase):

SET: OFF→ON

Formation of Conducting Filament

structural change

RESET: $ON \rightarrow OFF$

Dissolution of

Conducting Filament

Physics Behind Switching Process:

current carrying CF charges and produces strong radial field

Numerical Modeling: Program

a MATLAB computer program is developed, consisting of 4 modules corresponding to the device states and switching processes executed sequentially mimicking actual device operation

Device State: determined by conduction mechanism and filament dimensions
Switching process: governed by thermodynamics:
(minimizing free energy by transforming phase)

Device Model:

TiN/Hf/HfO₂/TiN multilayered RRAM device is modeled in COMSOL

OFF/ON: the gap/filament remains intact

RESET/SET: the gap/filament grows following the free energy minimum

Free Energy = Thermal + Electrostatic + Phase transition (Surface & Volume)

The thermal and electrostatic energies are obtained by solving coupled heat-electromagnetic PDE in COMSOL

Device Model:

material and various other parameters

C-[I/kg K] 6 c o[kg/m3] Donomoto

	Materiai	0 _C [S/III]	K[VV/K.III]	Cp[J/Kg.K]	ϵ_r	p[kg/III°]	Parameter	value	Parameter	value
	SiO ₂	10 ⁻⁹	1.38	703	3.9	2.2×10^3	Circuitry		Chemical Energy	
	TiN	Exp. $\sigma_c(T)^a$	$\sigma_c(T)TL^{\mathrm{d}}$	545.33	-∞ ^f	5.22×10^3	R_L	3.1 kΩ	σ	0.01 J/m ³
	Hf	Exp. $\sigma_c(T)^b$	$\sigma_c(T)TL^{\mathrm{d}}$	144	-∞ ^f	13.3×10^3	$V_{ m amp(+ve)}, \ V_{ m amp(-ve)}$	1.25 V, -1.75 V		
	HfO ₂	10	0.5	120	25	10×10^3			$\overline{\delta\mu_1}$	10 GJ/m ³
	HFO _{2-x}	$\sigma_{0f} \exp\left(-\alpha_f \ln\left(\frac{\tau}{\tau_0}\right)\right) \exp\left(\sqrt{\frac{eV}{kT}}\right)$ $\sigma_{0g} \exp\left(-\alpha_g \ln\left(\frac{\tau}{\tau_0}\right)\right) \exp\left(\sqrt{\frac{eV}{kT}}\right)$	$\sigma_c(T)TL^{ m d}$ $\kappa_{ m eff}\sigma_c(T)TL^{ m d}$	140°	-∞ ^{e,f}	12×10 ^{3e} 10×10 ³			$\overline{\delta\mu_2}$	6.5 GJ/m^3
							λ	100 V/s, 10 kV/s,	eta_1	0.35 GJ/m^3
								1 MV/s	eta_2	0.5 GJ/m^3
	Gap						Filament Nucleation		$\Delta W_{ m Buc}$	1.0 eV
							h	5 nm	$\Delta W_{ m Bi}$	0.1 eV
							1		Ī	

^a E. Langereis et al., *J. Appl. Phys.* **100**, 023534 (2006).

σ [S/m]

Material

M.A. Panzer, et al, *IEEE El. Dev. Lett.*, 30, pp. 1269-1271 (2009)

B. Govoreanu, et al., *IEEE Trans. El. Dev.*, 60, pp. 2471-2478 (2013)

E. Hildebrandt, et al., *Appl. Phys. Letts.*, 99, pp. 112902, (2011)

M.K. Samani, et al., *Thin Solids Films*, 573, pp. 108-112, (2013)

Carl L. Yaws. *The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals*, 2nd ed. (2015)

R_L	3.1 kΩ	σ	0.01 J/m ³		
$V_{ m amp(+ve)}$,	1.25 V,	$\overline{\delta\mu_1}$	10 GJ/m ³		
$V_{\text{amp(-ve)}}$	-1.75 V	$\overline{\delta\mu_2}$	6.5 GJ/m ³		
•	100 V/s,	eta_1	$0.35 \; GJ/m^3$		
λ	10 kV/s, 1 MV/s	eta_2	$0.5~\mathrm{GJ/m^3}$		
Filament	Nucleation	$\Delta W_{ m Buc}$	1.0 eV		
h	5 nm	$\Delta W_{ m Bi}$	0.1 eV		
W_0	2.5 eV	$\Delta W_{ m Bmc}$	0.3 eV		
Λ	6.6	Statio	c Disorder		
r_c	2.9 nm	σ_{0f}	rand(2, 8) kS/mg		
$r_{ m min}$	0.5nm	- 7			
α	$r_{ m min}/r_{ m c}$	σ_{0g}	rand(1, 5) kS/m ^g		
Electric C	Conductivity	$lpha_f$	rand(-0.07, - 0.03) ^g		
σ_{0f}	5 kS/m	α_{q}	rand(0.03, 0.07)g		
σ_{0g}	3 kS/m	J	rand(8.5, 11.5) GJ/m ^{3g}		
α_f	-0.05	$\overline{\delta\mu_1}$			
$lpha_g$	0.05	$\overline{\delta\mu_2}$	$rand(5.5, 7.5)$ GJ/m^{3g}		
τ	$V_{ m amp}\!/\!\lambda$		rand(2.4, 2.6)		
$ au_0(au_{ m min})$	0.1 ps	W_0	eV ^g		
		Thermal Conductivity			

 $\kappa_{\rm eff}$

10

g function rand(x, y) produces uniformly distributed random number between x and y

^b P. D. Desal, et al., *J. Phys. Chem. Ref. Data.* **3**, 1069 (1984).

^c Relative Permittivity

^d Wiedemann-Franz-Lorenz Law

^e Assumed value such that it lies in between Hf and HfO₂

f-106 was used instead of -∞ for practical purpose

Conduction Mechanism:

no consensus in RRAM community; we eliminate diffusion based mechanisms on the basis of unphysical device temperature

- Conduction mechanisms proposed: Poole-Frenkel, trap-assisted tunneling, Schottky emission, space charge limited current, variable range and nearest neighbor hopping
- All provide equally acceptable fits: nonindicative

 $\times 10^3$

1.60

1.40

1.20

1.00

0.80

0.60

0.40

- Diffusion transport yields unphysical gap temperature ~ 4500K
- Electrons ballistically travels through ~2nm gap
- Correction term $\kappa_{\rm eff}$ introduced in thermal conductivity
- $\kappa_{\mathrm{eff}} = \frac{\lambda_{\mathrm{bal}}}{\lambda_{\mathrm{diff}}} \approx \frac{10nm}{1nm}$
- $\kappa_{\rm gap} = \kappa_{\rm eff} \kappa_{\rm diff}$
- λ is the mean free path

Diffusive heat Transport

Variability of RRAM parameters:

HfO₂ is amorphous: some atoms retain mobility represented by random Double Well Potentials (DWP)

Disordered system: HfO₂

Blue Atom can reside in either position

Known since 1971 due to *Anderson, Halperin, Varma* Verified via effects on:

Specific heat, Thermal expansion, Thermal conductivity, Sound absorption, Sound propagation, IR absorption, Light propagation, Point contact resistance, Electronic noises, High pressure behavior...more

<u>Universal in noncrystalline metals, semiconductors,</u> and dielectrics

In noncrystalline structures some atoms retain mobility moving in random **Double Well Potentials**

Configurational coordinate

Transition time
$$\tau = \exp\left(\frac{W_B}{kT}\right)$$

Probability density $g(\tau) = \frac{1}{\tau}$
Cumulative density $\propto \ln \tau$

Average ramp-rate dependent effects

DWP affecting the electric conduction and energetics of filament and gap

The structural changes affects

- <u>Electrical Conduction</u>; the deformation due to DWP distorting the mobility edge and conduction;
- Chemical potential contribution

To Quantify

- the input voltage activates DWPs with transition time smaller than pulse time $(\tau < \tau_P)$
- Average fraction of activated DWP

$$f(\tau_P) = \frac{kT}{\Delta W_B} \ln \left(\frac{\tau_P}{\tau_0} \right)$$

• Rate dependent Conduction

$$\sigma \sim \exp\left(\alpha \ln\left(\frac{\tau_P}{\tau_0}\right)\right)$$
, where $\alpha = \frac{u_0 D}{kT}$

Rate dependent Chemical Potential

$$\delta\mu = \overline{\delta\mu} + \beta kT \left(\frac{1}{\Delta W_{uc}} - \frac{1}{\Delta W_i}\right) \ln \left(\frac{\tau_P}{\tau_0}\right)$$

Cycle-to-cycle Variations

due to smalless of RRAM, the number of DWPs not enough to provide the statistical self-averaging

- Each switching cycle yields different structure
- The difference cause variation in DWP barrier heights, chemical potentials, and deformation potentials
- Applied random number generator to randomly vary DWP ensembles from once cycle to another

Uniformly distributed random number from 0 to 1

CONCLUSIONS

- 1. Developed physics based numerical model of RRAM including voltage ramp-rate and cycle-to-cycle variations
- 2. Established and incorporated the ballistic nature of electron transport
- 3. Included structural disorder of amorphous HfO₂ via double well atomic potentials modeling the observed variations between nominally identical RRAM devices
- 4. Developed a thermodynamic description of nano-sized modern RRAM and its numerical algorithm dramatically simpler than the kinetic approach

Acknowledgement

- This work was supported in part by Semiconductor Research Corporation (SRC) under Contract No.2016LM-2654.
- Collaborators
 - Ilya V. Karpov (Component Research, Intel)
 - Roza Kotlyar (Process Technology Modeling, Intel)