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Jet Engine Thrust Augmentation
• Typical gas turbine cycles have good 

performance around a specific design point

• Certain applications require high thrust at a 

wide range of operating conditions

– Military fighter aircraft and supersonic transport

• Maximum gas temperature is limited at the 

turbine inlet

– Primary combustors operate lean, excess oxygen

• Remaining oxygen can be burned with 

additional fuel downstream of the turbine

– Increased total temperature, increased exit 

velocity and thrust

• Augmented engine thrust levels equivalent to a 

larger engine without augmentation

– Reduced specific fuel consumption, increased 

noise, and variable geometry nozzles
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The Brayton Cycle with afterburning. [1]



Jet Engine Augmentors
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Augmentor Combustion Instability

• Heat release rate oscillations couple with resonant 

chamber acoustics

– Intensified heat release and pressure fluctuations

• High frequency transverse oscillations (screech) are 

the most problematic

– Accelerated component wear and risk of engine failure

• Perforated liners are traditionally used to suppress 

screech

– Increase damping at the chamber walls

• Modern augmentors are more prone to screech

– Screech frequencies below the effective range of liners

• New suppression strategy is needed

– Must understand the driving mechanisms of screech
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Thermoacoustic feedback cycle [2].

Schlieren photographs during a) smooth and 

b) screeching combustion [3].
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Augmentor Screech Damage
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Destruction of augmentor shell due to screech [4]. Augmentor shell rupture due to screech [5].



The UC Combustion Wind Tunnel Facility (CWTF) 

• The CWTF replicates the inlet conditions of gas 

turbine augmentor

• Combustion instabilities observed from 100-2300 Hz

• Complete characterization of an instability requires 

extensive acoustic measurements
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Motivation for COMSOL

• CWTF acoustic measurements via 12 pressure 

transducers

– Partial acoustic field reconstruction

– Infer mode frequency and shape from Eq. 1

• Eq. 1 applies to empty, closed-end, isothermal duct

• How well does Eq. 1 apply to the CWTF

– Boundary conditions (open-open)

– Complex internal geometry (flame holder)

– Temperature gradient (flame)

• Additional physics easily added

– Heat transfer, flow, chemical reactions

• Prediction of combustion instabilities
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Geometry and Mesh
• Rectangular cross-section duct (7” x 8”)

– Length of 64.1” (test section + inlet) 

• Empty duct and the addition of a flame 
holder to the domain
– Triangular cross-section (1.5” wide, 35° angle)

– Leading edge at 𝑦 = 40"

• Flame domain downstream of the 
flame holder
– Large temperature gradient in approximate shape 

of a typical flame

• Mesh refinement around flame holder and 
temperature gradient
– Empty duct, 197,164 tetrahedral elements

– Flame holder and domain added, 716,599 
tetrahedral elements
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Governing Equations

• Pressure Acoustics, Frequency 
Domain (Eq. 2)

– Solves Helmholtz Equation in the 
frequency domain

• Eigenfrequency Study
– Eigenfrequency: resonant frequencies

– Eigenmodes: normalized acoustic field

• Boundary conditions
– Sound Soft (𝑝𝑡 = 0) – open-end

• Inlet and outlet faces

– Sound Hard (Eq. 3) – closed-end (wall)

• 𝑇𝑐𝑜𝑙𝑑 = 293.15 𝐾, 𝑇𝐹𝑙𝑎𝑚𝑒 = 1600𝐾
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Baseline Case: Empty, Open-End Duct

• Longitudinal modes have inlet and outlet pressure nodes

– Mode number: number of pressure antinodes

– Mode frequency matches Eq. 1

• Transverse modes have pressure antinodes at walls

– Mode number: the number of pressure nodes

– Mode frequency does not match Eq. 1

• Longitudinal component to transverse modes
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Open-End Duct with Flame Holder
• Minimal change in mode shapes and frequency 

for longitudinal modes

• No change for transverse modes along the length 

of the flame holder

• Transverse modes across the width of the flame 

holder change significantly

– Mode concentrates around the flame holder and extends 

in a “V” shape upstream and downstream

– Opposite oriented high pressure regions on the flame 

holder surfaces
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Open-End Duct with Flame Holder
Transverse Instability Implications

• 180° out-of-phase high pressure regions on the flame 
holder surfaces

– Force the boundary layer such that vortices are shed in 
an alternating fashion

• Periodic transport of fresh reactants into the wake of 
the flame holder

– Leads to oscillating heat release 
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Schlieren photographs during screeching 

combustion [3].



Open-End Duct with Flame Holder 

and Temperature Gradient
• 𝑇𝐹𝑙𝑎𝑚𝑒 = 1600𝐾

• Mode frequencies increases due to region of 

high temperature

• Transverse modes become concentrated to 

upstream domain

– Reduced mode presence downstream of flame holder

– 180° out-of-phase pressure regions still form on 

flame holder
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Combined Modes and Mode Transition

• Many more complicated cases exist

• Simultaneous modes

• Combined modes 

– Standing waves in multiple 
dimensions of the duct

• Mode Transition

– Upstream longitudinal modes 
transition to transverse behavior 
downstream of the flame holder

• Numerous up and downstream 
pressure measurements for 
experimental detection

– COMSOL simulation supplement 
and guide experiment
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Conclusions and Future Work 

• The addition of a flame holder to the domain significantly effects lateral transverse 
mode shapes
– 180° out-of-phase high pressure regions on the flame holder surface suggests screech coupling 

mechanism

• Heat release concentrates transverse modes upstream of the flame holder

• COMSOL Simulation is a valuable tool for aiding the characterization of 
combustion instability

• Examine geometric changes to flame holder and flame domain

• Alter boundary conditions

• Add heat transfer, flow, and chemical reaction physics

• Continue to develop user-friendly GUI
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Instability Characterization

• Heat Release

– High speed imaging (chemiluminescence)

• Flow

– Particle Image Velocimetry (PIV)

• Acoustics

– Water-cooled pressure transducer

– Modal Analysis: 12 un-cooled Kulite

piezoresistive transducers
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