
An Automated Workflow for Meshing Evolving Microstructures from
High-Throughput Grain Growth Simulations

M.C. Golt and E. Hernández-Rivera

Weapons and Materials Research Directorate, U.S. Army Research Laboratory, APG, MD, U.S.A.

Introduction

Microstructure evolution simulations using the Potts
Monte Carlo (PMC) and phase-field models are
routinely used to simulate sintering and densification
of ceramic and metallic materials. Understanding the
evolution of microstructural features is important as
these are known to influence different materials
properties, e.g., strength through the Hall-Petch effect.
An approach to understanding how microstructure
evolves under different conditions (e.g., processing) is
to simulate the microstructural evolution at
mesoscales. After obtaining a microstructure, analysis
of a finite element mesh of the microstructure is often
desired to determine the properties or the response. In
addition, certain properties such as the electrical
conductivity might be desired at each time-step of the
microstructural evolution simulation. Therefore, the
process of obtaining the microstructure output at a
given simulation time-step, meshing that
microstructure, and solving for its properties through
finite element analysis software needs to be
automated. SPPARKS [1] is an open-source,
parallelized Monte Carlo-based framework that
enables rapid production of 3D microstructures.
SPPARKS’s AppSinter “application” simulates the
densification of structures through pore removal and
can be automated through command line
interfacing. COMSOL has powerful solvers that can
determine the properties of these microstructures and
can be automated through the LiveLink for MATLAB
interface. However, adequately meshing these
structures is challenging as there can be a multitude of
material’s features and properties, as well as interfaces
that must be accounted for reliably. ISO2MESH is a
popular MATLAB open-source meshing toolbox that
can create a 3D tetrahedral finite element mesh from
gray-scale volumetric images, such as those obtained
from computed tomography scans [2]. However, the
high-level functions of this toolbox will fail to produce
COMSOL compatible meshes where more than two
domains are present at a joint interface: a common
occurrence in microstructures where three grains come
together to form a triple-point.

This paper details how some lower-level functions
from the ISO2MESH toolbox can be used to provide

robust, COMSOL compatible meshes from voxelized
3D matrices obtained from SPPARKS microstructure
simulations. Simulations of the microstructure’s
conductivity during the densification process are
produced using the COMSOL AC/DC module.

Microstructure Generation using SPPARKS

Microstructural evolution during sintering is complex
and not easily obtained from experimental results.
Therefore, synthetic microstructures were generated
using the SPPARKS’s AppSinter, which simulates the
densification of microstructures during sintering.
SPPARKS is a kMC framework that was initially
developed to model curvature-driven grain growth as
simulated by the Potts Monte Carlo model. It employs
a uniform meshless grid where each voxel (“node”)
represents a microstructural feature (i.e., grain
orientation and pore-state). Within SPPARKS, a
model based on mechanisms similar to Ashby’s classic
6-paths for diffusion known to describe solid-state
sintering was developed by Cardona et al. [3]. The
solid-state sintering processes observed leading to
microstructural evolution are: grain growth,
surface/pore migration, and vacancy annihilation at
grain boundaries. Each of these processes is defined
by a kinetic rate (relative frequency) at which each
process is attempted. Furthermore, the model defines
a process-specific “temperature” which influences
their probability of acceptance as defined by the
Boltzmann distribution. As with the Potts Monte
Carlo model, the microstructure evolves through
interfacial energy minimization by allowing grain
growth. This kMC implementation has been validated
against sintering of Cu-powder compacts [4]. An
example of a SPPARKS generated porous
microstructure is shown in Figure 1, where the domain
shown and used for the FEM simulations was limited
to the internal volume as to avoid external surface
roughness.

Figure 1. Microstructure obtained using SPPARKS. Colors
indicate different grain orientations. Missing voxels indicate
pores. Volume has a density of 91.4%.

Mesh Generation and Export to COMSOL

Despite the intent of the ISO2MESH toolbox to
automatically generate a mesh of multi-domain
geometries, mesh generation of these microstructures
will often fail to produce a COMSOL compatible
mesh when using the high-level functions of the
toolbox. For simple binary or grayscale volumes these
functions will provide for easy generation of
compatible meshes, but they tend to fail when there are
instances with multiple domains converging at a single
point. However, many of the lower-level functions of
this toolbox are convenient for mesh handling and
analysis. As such, several of these functions were used
to generate COMSOL compatible meshes through
MATLAB on the challenging microstructure domains
generated through SPPARKS. The mesh generation
process begins with a coarse tetrahedral element mesh
that, other than being the same size as the bounding
box, is not refined to specific features in the geometry.
Then, elements that are located near boundaries within
the geometry are identified and progressively refined
such that there are finer elements at the grain
boundaries and coarse elements in the grain interiors.
When the final mesh is obtained, the elements are
assigned to a domain (grain ID or pore) depending on
where their centroids reside in the microstructure. The
following steps detail this process:

(1) Remove extremely small grains (if <0.04% the

total volume) by converting them to pores. Grains
this small are essentially a free atom transporting
mass through space, from one grain to another.

(2) Create a default box with a coarse mesh using
meshabox, the same size as the microstructure
bounds.

(3) For each node of the mesh, determine which
domain (grain ID or pore) it would reside in
according to its 𝑥𝑥,𝑦𝑦, 𝑧𝑧 position.

(4) Determine which tetrahedral are at a grain
boundary interface (where one or more of the tet’s
nodes are in a different domain).

(5) Refine the mesh at the grain boundary interface
nodes using meshrefine with an order-of-
magnitude reduced volume.

(6) Repeat once steps 3 through 5 with the refined
mesh.

(7) Assign each tetrahedral to a domain (grain ID or
pore) according to the 𝑥𝑥,𝑦𝑦, 𝑧𝑧 position of its
centroid (as found via meshcentroid) in the
microstructure.

The ISO2MESH toolbox includes the function
savemphtxt that could be used to write the mesh to a
‘*.mphtxt’ file that can be imported within the
COMSOL graphical user interface. However, the aim
of this work was to generate a high-throughput
workflow to enable analysis of large numbers of
simulated microstructures. Because MATLAB is
already handling the SPPARKS simulations and the
mesh generation, the LiveLink for MATLAB interface
is a convenient and efficient tool for automating the
analysis of the structures. The mesh was setup within
a COMSOL v5.3 model with the AC/DC module using
the following MATLAB syntax:

%Create model in COMSOL v5.3
1 import com.comsol.model.*
2 import com.comsol.model.util.*
3 model = ModelUtil.create('Model');
4 model.component.create('comp1', true);
5 model.component('comp1').geom.create('geom1', 3);
6 model.component('comp1').mesh.create('mesh1');
7 model.component('comp1').physics.create('ec',
'ConductiveMedia', 'geom1');
8 model.study.create('std1');
9 model.study('std1').create('stat', 'Stationary');
10 model.study('std1').feature('stat').activate('ec', true);
%Upload the mesh
11 model.mesh('mesh1').data.setElem('tet', elem(:, 1:4)'-1);
12 model.mesh('mesh1').data.setVertex(node');
13 model.mesh('mesh1').data.setElemEntity('tet', elem(:,5));
14 model.mesh('mesh1').data.createMesh;
15 disp('COMSOL mesh created.')

Here, node is a 𝑚𝑚 × 3 matrix of 𝑥𝑥,𝑦𝑦, 𝑧𝑧 coordinates and
elem is 𝑛𝑛 × 5 matrix, where columns 1 through 4
reference the 4 nodes of the tetrahedral and column 5
is the domain type (either pore or grain ID).
Instructions for setting the mesh data can be found in
the LiveLink for MATLAB users guide [5]. The node
list in COMSOL begins with a node 0, hence the
subtraction of 1 (command 11, data.setElem) from the
element list elem. The setElemEntity function defines
which elements belong to which domains. This

information is essential for there to be multiple
domains within the mesh and was determined in step
(7) of the mesh generation procedure. The mesh of two
microstructures, one with the initial packing (nearly
60%) of spherical grains, and a later densified
structure of nearly 91.4% is shown in Figure 2.
Despite the large difference in microstructure, the
described meshing method was able to successfully
import the meshed geometry into COMSOL for all
time steps during the densification simulation.

Figure 2. Mesh of the microstructure at initial 59.2% density
(top) and a later 91.4% density (bottom). The mesh is refined
at the grain boundaries. Colors indicate different grain
orientations.

Model Development

With the mesh determined and the mesh data applied
to the model, the material properties and boundary
conditions can be applied. COMSOL gives each entity
(point, edge, surface, domain) a reference number.

These numbers can be used to programmatically apply
a material property or boundary condition to a
particular entity. While the number given to each
entity of the geometry by COMSOL is methodical,
without knowing the exact procedure, the numbering
may appear to the user as a random assignment.
Therefore, the approach often taken is to discover
COMSOL’s entity ID assignments. Within the
LiveLink for MATLAB interface the function
mphselectcoords can be used to determine the number
assignments for point, edge, boundary, and domain
entities when their approximate coordinates are
known. In this example, each tetrahedral element
belongs to either a pore or a grain, as determined by
step (7) of the mesh building procedure. The domain
for each tetrahedral can then be determined via
mphselectcoords by passing in the coordinates of the
4 nodes defining the tetrahedral. The MATLAB
syntax used for finding the corresponding domain ID
for the nodes of a tetrahedral (i) that was identified as
belonging to a pore was:

id=mphselectcoords(model,'geom1',node(porenodes(i, :), :)',
'domain', 'include', 'all');

In practice, obtaining the domain entity ID that every
tetrahedral element belongs to using this command
takes considerable time. This processes is redundant
as multiple tetrahedral elements will report the same
domain ID. Once the COMSOL assigned entity ID is
discovered for a domain, it does not need to be found
again. For this example there are only two domain
types of interest: pore or grain type. If all the domain
entity IDs for the pore domains are found, then all the
remaining domain entity IDs are assumed to belong to
grains. It was found that especially for high porosity
microstructures all the domain entity IDs could be
found through quickly evaluating at random just 300
tetrahedral coordinates that were identified as
belonging to pores (according to column 5 of the elem
array). After the domain entity IDs are known for the
pores vs. the grains, the material properties can be
defined and applied using the examples provided in
the LiveLink for MATLAB user’s guide [5].

Boundary properties can be applied once the
COMSOL assigned boundary entity IDs are known.
These can be obtained in an approach similar to that
used to find the domain entity IDs, but through using
the mphselectbox function to grab all entities within a
bounding box. In this example the top and bottom
boundaries of the microstructure are needed to apply
an electrostatic potential and ground. For example, the
boundary element IDs of the top boundaries were
found using the following MATLAB syntax:

top_boundaries = mphselectbox(model,'geom1',[0, sx; 0, sy;
sz-1, sz], 'boundary', 'include', 'any');

Here, 𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠, and 𝑠𝑠𝑠𝑠 are the size of the model in 𝑥𝑥,𝑦𝑦,
and 𝑧𝑧, where the bottom corner of the model is at
[0,0,0]. A similar syntax can be used to find the
bottom and interior boundary element IDs. Once
found, the entity IDs can be used to apply the desired
boundary properties.

Simulation Setup and Results

For this example, a measurement of the electrical
current through an alumina ceramic microstructure
that is densifying during thermal treatment is
simulated. SPPARKS was used to provide a series of
90 microstructures at different time steps throughout
the densification process. MATLAB was then used to
automate the workflow of importing the structures,
meshing via the previously described method, and
solving for the current across the structure through the
LiveLink for MATLAB interface and the AC/DC
module. A sub-volume of 140 × 140 × 140 voxels
was taken from the inner volume of the densifying
structure to analyze as the outermost surface of the
volume has large topological variations due to the
shrinking volume. A 1 volt terminal was applied to all
top boundaries, and a ground condition was applied to
all bottom boundaries. Alumina is known to have a
grain boundary conductivity that is significantly
higher than the grain conductivity at sintering
temperatures [6]. Additionally, these grain boundaries
(few nanometers) are orders of magnitude thinner than
the grain size (microns). A full fidelity model of the
grain boundaries would require an unnecessarily large
amount of elements to resolve thin grain boundaries.
Therefore, in this case, an electric shielding condition
can be applied to all interior boundaries to reduce the
resources needed to compute the simulation [7]. The
following table lists the material properties used in this
example.

Feature σ (S/m) ε thickness
Grain 0.105 9.7 as given
Grain boundary 2 9.7 3 (nm)
Pore 1E-15 1 as given

Table 1: Material electrical properties assigned to features
of the microstructure.

SPPARKS simulated the sintering and densification of
a microstructure that first began with a 3D compact of
randomly distributed particles with a normal
distribution. As in reference [8], the LAMMPS “fix
pour” command was used to "pour" ~700 spherical
particles that represent powder particulates into a
container. This powder compact was placed within a

300 × 300 × 300 voxels domain where these spheres
were discretized into the voxelized grid. As previously
mentioned, the microstructure evolves based on how
the different frequencies are defined. Here, the event
relative frequencies were defined as 2:1:10 for
grain growth : pore migration : vacancy annihilation,
respectively. The temperatures were defined as 1.5, 1,
and 15 [a.u.] for grain growth, pore migration, and
vacancy annihilation, respectively. Both the grain
growth frequency and temperature were slightly over
that of pore migration, as larger grains were desired.

Simulation Results

The densification range of the SPPARKS
microstructure simulation is divided into a low density
regime, between 60% and 90% density, a high density
regime, between 90% and 99.9% density, and a full
(100%) density regime. The bulk of the densification
occurs during the low-density regime, and slows as it
approaches full density in the high-density regime.
Large grains continue to grow at the expense of
smaller grains (coarsening) during the full density
regime.

The conductivity of the microstructures determined by
the COMSOL model for the three density regimes is
shown in Figure 3. The low density regime
conductivity increases as the pore volume is removed
and can be viewed as having two regions where there
is a near-linear relationship between density and
conductivity. This is an expected result and it follows
the relationship between density and conductivity of
the analytical percolation model:

𝜎𝜎 = 𝜎𝜎𝑚𝑚 �
𝜑𝜑𝑚𝑚 − 𝜑𝜑𝑐𝑐
1 − 𝜑𝜑𝑐𝑐

�

where 𝜎𝜎𝑚𝑚 is the conductivity of the material (in this
case the effective conductivity of alumina grains and
grain boundaries), 𝜑𝜑𝑚𝑚 is the volume concentration of
the alumina, and 𝜑𝜑𝑐𝑐 is the critical or tap density of the
powder. At the lowest, initial stages of densification
the slope of the conductivity vs. density result is
steeper (curve fit 𝜎𝜎𝑚𝑚 of 1.05) than that of the later
stages (curve fit 𝜎𝜎𝑚𝑚 of 0.11). This suggests that the
early gains in conductivity are mostly due to network
formation of the higher conductivity grain boundaries.
At later stages, increases in conductivity with density
slows as it is dominated by gains in the volume
fraction of the bulk, lower-conductivity grains. In the
high density regime there is a slowing to the increase
in conductivity with density as there are two
competing mechanisms of equal contribution. The
remaining pores are eliminated, raising the

conductivity, however an increasing amount of the
more conductive grain boundaries are eliminated as
the grains coarsen. The conductivity decreases during
the full density regime as the higher-conductivity grain
boundaries are gradually eliminated during grain
coarsening.

Figure 3: (Top) Conductivity increase during the low
density regime. Red lines indicate fit to percolation model.
(Mid) Conductivity increase during the high density regime.
(Bot) Conductivity decrease during the full density regime.

Summary

Automated and robust meshing of complex geometries
for COMSOL has been described that uses functions
from the ISO2MESH toolbox and the LiveLink for
MATLAB interface. This method has been applied to
a sequence of volumes from a microstructure
densification simulation, where it was able to
successfully import a meshed geometry to COMSOL
for the wide-range of microstructures provided. Also
described is a method to automatically identify the
regions of the geometry to assign the desired material
and boundary conditions. An illustrative example of
how to use this method for COMSOL model
development and solving is given with a simulation of
the change in electrical conductivity of the
microstructure during the densification process.

References

1. S. Plimpton, C. Battaile, M. Chandross, L. Holm, A.
Thompson, V. Tikare, G. Wagner, E. Webb, X. Zhou,
C. Garcia Cardona, A. Slepoy, “Crossing the
Mesoscale No-Man's Land via Parallel Kinetic Monte
Carlo”, Sandia Report: SAND2009–6226 (Oct 2009).

2. Qianqian Fang and David Boas, "Tetrahedral mesh
generation from volumetric binary and gray-scale
images," Proc. of IEEE International Symposium on
Biomedical Imaging 2009, pp. 1142-1145, 2009

3. Cristina Garcia Cardona, Veena Tikare, Steven J.
Plimpton, “Parallel simulation of 3D sintering”, Int.
Journal of Computational Materials Science and
Surface Engineering, Vol. 4, 37-54 (2011)

4. Tikare, Veena, et al. "Numerical simulation of
microstructural evolution during sintering at the
mesoscale in a 3D powder compact." Computational
Materials Science 48.2 (2010): 317-325.

5. LiveLink™ for MATLAB® User’s Guide,
©Comsol (2009-2017)

6. Kitazawa, K., and R. L. Coble. "Electrical
Conduction in Single‐Crystal and Polycrystalline
Al2O3 at High Temperatures." Journal of the
American Ceramic Society 57.6 (1974): 245-250.

7. AC/DC Module Application Library Manual,
©Comsol (2009-2017)

8. Bjørk, Rasmus, et al. "The effect of particle size
distributions on the microstructural evolution during
sintering." Journal of the American Ceramic Society
96.1 (2013): 103-110.

APPENDEX – Mesh Generation MATLAB code

%%Spin is the voxelized volume from SPPARKS
%Pore voxels have value of 1
%Grain orientation voxels are integers > 1
[sx, sy, sz] = size(spin);

%Step 1: Remove small grains
disp('removing small features...')

tspin = int64(spin==1);
tctr = 0;
uids = unique(spin);
for i = 1:length(uids)
 if uids(i) ~= 1
 t = sum(sum(sum(spin==uids(i))));
 %Identify small grains < 0.04% of total volume
 tspin = tspin + uids(i)*int64(bwareaopen(spin==uids(i), 0.0004*(sx*sy*sz), 18));
 tctr = tctr + (t - sum(sum(sum(tspin==uids(i)))));
 end
end
tspin(tspin==0) = 1; %Convert small grains to pores
spin = tspin;
disp([num2str(tctr), ' voxels removed. ', num2str(tctr/(size(spin,1)*size(spin,2)*size(spin,3))), '% volume converted.'])

%% Create mesh with functions from the ISO2MESH toolbox

%Step 2: Mesh a box with initial max tetrahedral volume of 0.0001, size
%scaled by 100
[node,face,elem]=meshabox([0.0001,0.0001,0.0001], [sx/100, sy/100, sz/100], 0.0001, 0.0001);
node = node*100;

vol=elemvolume(node,elem(:,1:4));
disp(['Mean Tet Volume: ', num2str(mean(vol))])
nodeids = spin(sub2ind(size(spin), ceil(node(:,1)), ceil(node(:,2)), ceil(node(:,3))));

%Step 3: identify the domains (grain IDs or pores) that the nodes of each
%tetrahedral belong to
tetids = zeros(size(elem,1),4);
for i = 1:length(elem)
 tetids(i, :) = nodeids(elem(i,1:4));
end
%Step 4: identify tetrahedrals that are not at grain boundary interfaces
intids = (tetids(:,1)==tetids(:,2) & tetids(:,3)==tetids(:,4) & tetids(:,1)==tetids(:,3));

%Step 5: refine tetrahedrals that are at grain boundary interfaces
[newnode, newelem,newface] = meshrefine(node,elem,(~intids)*20);
node = newnode; elem = newelem;
vol=elemvolume(node,elem(:,1:4));
disp(['Mean Tet Volume: ', num2str(mean(vol))])

%Repeat Step 3: For the new mesh, identify the domains (grain IDs or pores)
%that the nodes of each tetrahedral belong to
nodeids = spin(sub2ind(size(spin), ceil(node(:,1)), ceil(node(:,2)), ceil(node(:,3))));
tetids = zeros(size(elem,1), 4);
for i = 1:length(elem)
 tetids(i, :) = nodeids(elem(i,1:4));
end
%Repeat Step 4: identify tetrahedrals that are not at grain boundary interfaces
intids = (tetids(:,1)==tetids(:,2) & tetids(:,3)==tetids(:,4) & tetids(:,1)==tetids(:,3));

%Repeat Step 5: refine tetrahedrals that are at grain boundary interfaces
vrefine = 3;
[newnode, newelem,newface] = meshrefine(node,elem,(~intids)*vrefine);
node = newnode; elem = newelem; face = newface;
vol=elemvolume(node,elem(:,1:4));
disp(['Mean Tet Volume: ', num2str(mean(vol))])

%Step 7: Assign each tetrahedral to a domain according to the position of
%its centroid

centroids=meshcentroid(node,face(:,1:3));
face(:,4) = spin(sub2ind(size(spin), ceil(centroids(:, 1)), ceil(centroids(:,2)), ceil(centroids(:, 3))));
centroids=meshcentroid(node,elem(:,1:4));
elem(:,5) = spin(sub2ind(size(spin), ceil(centroids(:, 1)), ceil(centroids(:,2)), ceil(centroids(:, 3))));
voidpts = elem((elem(:,5)==1), 1:4);

