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Introduction 
 
Microstructure evolution simulations using the Potts 
Monte Carlo (PMC) and phase-field models are 
routinely used to simulate sintering and densification 
of ceramic and metallic materials.  Understanding the 
evolution of microstructural features is important as 
these are known to influence different materials 
properties, e.g., strength through the Hall-Petch effect. 
An approach to understanding how microstructure 
evolves under different conditions (e.g., processing) is 
to simulate the microstructural evolution at 
mesoscales. After obtaining a microstructure, analysis 
of a finite element mesh of the microstructure is often 
desired to determine the properties or the response.  In 
addition, certain properties such as the electrical 
conductivity might be desired at each time-step of the 
microstructural evolution simulation.  Therefore, the 
process of obtaining the microstructure output at a 
given simulation time-step, meshing that 
microstructure, and solving for its properties through 
finite element analysis software needs to be 
automated.  SPPARKS [1] is an open-source, 
parallelized Monte Carlo-based framework that 
enables rapid production of 3D microstructures. 
SPPARKS’s AppSinter “application” simulates the 
densification of structures through pore removal and 
can be automated through command line 
interfacing.  COMSOL has powerful solvers that can 
determine the properties of these microstructures and 
can be automated through the LiveLink for MATLAB 
interface. However, adequately meshing these 
structures is challenging as there can be a multitude of 
material’s features and properties, as well as interfaces 
that must be accounted for reliably.  ISO2MESH is a 
popular MATLAB open-source meshing toolbox that 
can create a 3D tetrahedral finite element mesh from 
gray-scale volumetric images, such as those obtained 
from computed tomography scans [2]. However, the 
high-level functions of this toolbox will fail to produce 
COMSOL compatible meshes where more than two 
domains are present at a joint interface: a common 
occurrence in microstructures where three grains come 
together to form a triple-point.  
 
This paper details how some lower-level functions 
from the ISO2MESH toolbox can be used to provide 

robust, COMSOL compatible meshes from voxelized 
3D matrices obtained from SPPARKS microstructure 
simulations. Simulations of the microstructure’s 
conductivity during the densification process are 
produced using the COMSOL AC/DC module. 
 
Microstructure Generation using SPPARKS 
 
Microstructural evolution during sintering is complex 
and not easily obtained from experimental results. 
Therefore, synthetic microstructures were generated 
using the SPPARKS’s AppSinter, which simulates the 
densification of microstructures during sintering.  
SPPARKS is a kMC framework that was initially 
developed to model curvature-driven grain growth as 
simulated by the Potts Monte Carlo model.  It employs 
a uniform meshless grid where each voxel (“node”) 
represents a microstructural feature (i.e., grain 
orientation and pore-state). Within SPPARKS, a 
model based on mechanisms similar to Ashby’s classic 
6-paths for diffusion known to describe solid-state 
sintering was developed by Cardona et al. [3]. The 
solid-state sintering processes observed leading to 
microstructural evolution are: grain growth, 
surface/pore migration, and vacancy annihilation at 
grain boundaries.  Each of these processes is defined 
by a kinetic rate (relative frequency) at which each 
process is attempted.  Furthermore, the model defines 
a process-specific “temperature” which influences 
their probability of acceptance as defined by the 
Boltzmann distribution.  As with the Potts Monte 
Carlo model, the microstructure evolves through 
interfacial energy minimization by allowing grain 
growth.  This kMC implementation has been validated 
against sintering of Cu-powder compacts [4].  An 
example of a SPPARKS generated porous 
microstructure is shown in Figure 1, where the domain 
shown and used for the FEM simulations was limited 
to the internal volume as to avoid external surface 
roughness. 

 



 
Figure 1. Microstructure obtained using SPPARKS.  Colors 
indicate different grain orientations.  Missing voxels indicate 
pores.  Volume has a density of 91.4%. 
 
Mesh Generation and Export to COMSOL 
 
Despite the intent of the ISO2MESH toolbox to 
automatically generate a mesh of multi-domain 
geometries, mesh generation of these microstructures 
will often fail to produce a COMSOL compatible 
mesh when using the high-level functions of the 
toolbox.  For simple binary or grayscale volumes these 
functions will provide for easy generation of 
compatible meshes, but they tend to fail when there are 
instances with multiple domains converging at a single 
point.  However, many of the lower-level functions of 
this toolbox are convenient for mesh handling and 
analysis.  As such, several of these functions were used 
to generate COMSOL compatible meshes through 
MATLAB on the challenging microstructure domains 
generated through SPPARKS.  The mesh generation 
process begins with a coarse tetrahedral element mesh 
that, other than being the same size as the bounding 
box, is not refined to specific features in the geometry.  
Then, elements that are located near boundaries within 
the geometry are identified and progressively refined 
such that there are finer elements at the grain 
boundaries and coarse elements in the grain interiors.  
When the final mesh is obtained, the elements are 
assigned to a domain (grain ID or pore) depending on 
where their centroids reside in the microstructure. The 
following steps detail this process: 
 
(1) Remove extremely small grains (if <0.04% the 

total volume) by converting them to pores. Grains 
this small are essentially a free atom transporting 
mass through space, from one grain to another. 

(2) Create a default box with a coarse mesh using 
meshabox, the same size as the microstructure 
bounds. 

(3) For each node of the mesh, determine which 
domain (grain ID or pore) it would reside in 
according to its 𝑥𝑥,𝑦𝑦, 𝑧𝑧 position. 

(4) Determine which tetrahedral are at a grain 
boundary interface (where one or more of the tet’s 
nodes are in a different domain). 

(5) Refine the mesh at the grain boundary interface 
nodes using meshrefine with an order-of-
magnitude reduced volume. 

(6) Repeat once steps 3 through 5 with the refined 
mesh. 

(7) Assign each tetrahedral to a domain (grain ID or 
pore) according to the 𝑥𝑥,𝑦𝑦, 𝑧𝑧 position of its 
centroid (as found via meshcentroid) in the 
microstructure. 

 
The ISO2MESH toolbox includes the function 
savemphtxt that could be used to write the mesh to a 
‘*.mphtxt’ file that can be imported within the 
COMSOL graphical user interface.  However, the aim 
of this work was to generate a high-throughput 
workflow to enable analysis of large numbers of 
simulated microstructures.  Because MATLAB is 
already handling the SPPARKS simulations and the 
mesh generation, the LiveLink for MATLAB interface 
is a convenient and efficient tool for automating the 
analysis of the structures.  The mesh was setup within 
a COMSOL v5.3 model with the AC/DC module using 
the following MATLAB syntax: 
 
%Create model in COMSOL v5.3 
1 import com.comsol.model.* 
2 import com.comsol.model.util.* 
3 model = ModelUtil.create('Model'); 
4 model.component.create('comp1', true); 
5 model.component('comp1').geom.create('geom1', 3); 
6 model.component('comp1').mesh.create('mesh1'); 
7 model.component('comp1').physics.create('ec',    
'ConductiveMedia', 'geom1'); 
8 model.study.create('std1'); 
9 model.study('std1').create('stat', 'Stationary'); 
10 model.study('std1').feature('stat').activate('ec', true); 
%Upload the mesh 
11 model.mesh('mesh1').data.setElem('tet', elem(:, 1:4)'-1); 
12 model.mesh('mesh1').data.setVertex(node'); 
13 model.mesh('mesh1').data.setElemEntity('tet', elem(:,5)); 
14 model.mesh('mesh1').data.createMesh; 
15 disp('COMSOL mesh created.') 
 
Here, node is a 𝑚𝑚 × 3 matrix of 𝑥𝑥,𝑦𝑦, 𝑧𝑧 coordinates and 
elem is 𝑛𝑛 × 5 matrix, where columns 1 through 4 
reference the 4 nodes of the tetrahedral and column 5 
is the domain type (either pore or grain ID).  
Instructions for setting the mesh data can be found in 
the LiveLink for MATLAB users guide [5].  The node 
list in COMSOL begins with a node 0, hence the 
subtraction of 1 (command 11, data.setElem) from the 
element list elem.  The setElemEntity function defines 
which elements belong to which domains.  This 



information is essential for there to be multiple 
domains within the mesh and was determined in step 
(7) of the mesh generation procedure. The mesh of two 
microstructures, one with the initial packing (nearly 
60%) of spherical grains, and a later densified 
structure of nearly 91.4% is shown in Figure 2.  
Despite the large difference in microstructure, the 
described meshing method was able to successfully 
import the meshed geometry into COMSOL for all 
time steps during the densification simulation. 

 
Figure 2. Mesh of the microstructure at initial 59.2% density 
(top) and a later 91.4% density (bottom). The mesh is refined 
at the grain boundaries. Colors indicate different grain 
orientations. 
 
Model Development 
 
With the mesh determined and the mesh data applied 
to the model, the material properties and boundary 
conditions can be applied.  COMSOL gives each entity 
(point, edge, surface, domain) a reference number.  

These numbers can be used to programmatically apply 
a material property or boundary condition to a 
particular entity.  While the number given to each 
entity of the geometry by COMSOL is methodical, 
without knowing the exact procedure, the numbering 
may appear to the user as a random assignment. 
Therefore, the approach often taken is to discover 
COMSOL’s entity ID assignments. Within the 
LiveLink for MATLAB interface the function 
mphselectcoords can be used to determine the number 
assignments for point, edge, boundary, and domain 
entities when their approximate coordinates are 
known.  In this example, each tetrahedral element 
belongs to either a pore or a grain, as determined by 
step (7) of the mesh building procedure.  The domain 
for each tetrahedral can then be determined via 
mphselectcoords by passing in the coordinates of the 
4 nodes defining the tetrahedral.  The MATLAB 
syntax used for finding the corresponding domain ID 
for the nodes of a tetrahedral (i) that was identified as 
belonging to a pore was: 
 
id=mphselectcoords(model,'geom1',node(porenodes(i, :), :)', 
'domain', 'include', 'all'); 
 
In practice, obtaining the domain entity ID that every 
tetrahedral element belongs to using this command 
takes considerable time.  This processes is redundant 
as multiple tetrahedral elements will report the same 
domain ID.  Once the COMSOL assigned entity ID is 
discovered for a domain, it does not need to be found 
again.  For this example there are only two domain 
types of interest: pore or grain type. If all the domain 
entity IDs for the pore domains are found, then all the 
remaining domain entity IDs are assumed to belong to 
grains.  It was found that especially for high porosity 
microstructures all the domain entity IDs could be 
found through quickly evaluating at random just 300 
tetrahedral coordinates that were identified as 
belonging to pores (according to column 5 of the elem 
array).  After the domain entity IDs are known for the 
pores vs. the grains, the material properties can be 
defined and applied using the examples provided in 
the LiveLink for MATLAB user’s guide [5].   
 
Boundary properties can be applied once the 
COMSOL assigned boundary entity IDs are known.  
These can be obtained in an approach similar to that 
used to find the domain entity IDs, but through using 
the mphselectbox function to grab all entities within a 
bounding box.  In this example the top and bottom 
boundaries of the microstructure are needed to apply 
an electrostatic potential and ground.  For example, the 
boundary element IDs of the top boundaries were 
found using the following MATLAB syntax: 
 



top_boundaries = mphselectbox(model,'geom1',[0, sx; 0, sy; 
sz-1, sz], 'boundary', 'include', 'any'); 
 
Here, 𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠, and 𝑠𝑠𝑠𝑠 are the size of the model in 𝑥𝑥,𝑦𝑦, 
and 𝑧𝑧, where the bottom corner of the model is at 
[0,0,0].  A similar syntax can be used to find the 
bottom and interior boundary element IDs. Once 
found, the entity IDs can be used to apply the desired 
boundary properties. 
 
Simulation Setup and Results 
 
For this example, a measurement of the electrical 
current through an alumina ceramic microstructure 
that is densifying during thermal treatment is 
simulated.  SPPARKS was used to provide a series of 
90 microstructures at different time steps throughout 
the densification process.  MATLAB was then used to 
automate the workflow of importing the structures, 
meshing via the previously described method, and 
solving for the current across the structure through the 
LiveLink for MATLAB interface and the AC/DC 
module.  A sub-volume of 140 × 140 × 140 voxels 
was taken from the inner volume of the densifying 
structure to analyze as the outermost surface of the 
volume has large topological variations due to the 
shrinking volume.  A 1 volt terminal was applied to all 
top boundaries, and a ground condition was applied to 
all bottom boundaries.  Alumina is known to have a 
grain boundary conductivity that is significantly 
higher than the grain conductivity at sintering 
temperatures [6].  Additionally, these grain boundaries 
(few nanometers) are orders of magnitude thinner than 
the grain size (microns). A full fidelity model of the 
grain boundaries would require an unnecessarily large 
amount of elements to resolve thin grain boundaries.  
Therefore, in this case, an electric shielding condition 
can be applied to all interior boundaries to reduce the 
resources needed to compute the simulation [7].  The 
following table lists the material properties used in this 
example. 
 

Feature σ (S/m) ε thickness 
Grain 0.105 9.7 as given 
Grain boundary 2 9.7 3 (nm) 
Pore 1E-15 1 as given 

Table 1: Material electrical properties assigned to features 
of the microstructure. 
 
SPPARKS simulated the sintering and densification of 
a microstructure that first began with a 3D compact of 
randomly distributed particles with a normal 
distribution. As in reference [8], the LAMMPS “fix 
pour” command was used to "pour" ~700 spherical 
particles that represent powder particulates into a 
container.  This powder compact was placed within a 

300 × 300 × 300 voxels domain where these spheres 
were discretized into the voxelized grid. As previously 
mentioned, the microstructure evolves based on how 
the different frequencies are defined. Here, the event 
relative frequencies were defined as 2:1:10 for        
grain growth : pore migration : vacancy annihilation, 
respectively. The temperatures were defined as 1.5, 1, 
and 15 [a.u.] for grain growth, pore migration, and 
vacancy annihilation, respectively.  Both the grain 
growth frequency and temperature were slightly over 
that of pore migration, as larger grains were desired. 
 
Simulation Results 
 
The densification range of the SPPARKS 
microstructure simulation is divided into a low density 
regime, between 60% and 90% density, a high density 
regime, between 90% and 99.9% density, and a full 
(100%) density regime.  The bulk of the densification 
occurs during the low-density regime, and slows as it 
approaches full density in the high-density regime.  
Large grains continue to grow at the expense of 
smaller grains (coarsening) during the full density 
regime. 
 
The conductivity of the microstructures determined by 
the COMSOL model for the three density regimes is 
shown in Figure 3. The low density regime 
conductivity increases as the pore volume is removed 
and can be viewed as having two regions where there 
is a near-linear relationship between density and 
conductivity.  This is an expected result and it follows 
the relationship between density and conductivity of 
the analytical percolation model:  
 

𝜎𝜎 = 𝜎𝜎𝑚𝑚 �
𝜑𝜑𝑚𝑚 − 𝜑𝜑𝑐𝑐
1 − 𝜑𝜑𝑐𝑐

� 

 
where 𝜎𝜎𝑚𝑚 is the conductivity of the material (in this 
case the effective conductivity of alumina grains and 
grain boundaries), 𝜑𝜑𝑚𝑚 is the volume concentration of 
the alumina, and 𝜑𝜑𝑐𝑐 is the critical or tap density of the 
powder. At the lowest, initial stages of densification 
the slope of the conductivity vs. density result is 
steeper (curve fit 𝜎𝜎𝑚𝑚 of 1.05) than that of the later 
stages (curve fit 𝜎𝜎𝑚𝑚 of 0.11).  This suggests that the 
early gains in conductivity are mostly due to network 
formation of the higher conductivity grain boundaries. 
At later stages, increases in conductivity with density 
slows as it is dominated by gains in the volume 
fraction of the bulk, lower-conductivity grains. In the 
high density regime there is a slowing to the increase 
in conductivity with density as there are two 
competing mechanisms of equal contribution.  The 
remaining pores are eliminated, raising the 



conductivity, however an increasing amount of the 
more conductive grain boundaries are eliminated as 
the grains coarsen.  The conductivity decreases during 
the full density regime as the higher-conductivity grain 
boundaries are gradually eliminated during grain 
coarsening. 
 

 
Figure 3: (Top) Conductivity increase during the low 
density regime. Red lines indicate fit to percolation model. 
(Mid) Conductivity increase during the high density regime. 
(Bot) Conductivity decrease during the full density regime. 

Summary 
 
Automated and robust meshing of complex geometries 
for COMSOL has been described that uses functions 
from the ISO2MESH toolbox and the LiveLink for 
MATLAB interface.  This method has been applied to 
a sequence of volumes from a microstructure 
densification simulation, where it was able to 
successfully import a meshed geometry to COMSOL 
for the wide-range of microstructures provided.  Also 
described is a method to automatically identify the 
regions of the geometry to assign the desired material 
and boundary conditions.  An illustrative example of 
how to use this method for COMSOL model 
development and solving is given with a simulation of 
the change in electrical conductivity of the 
microstructure during the densification process. 
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APPENDEX – Mesh Generation MATLAB code 
 
%%Spin is the voxelized volume from SPPARKS 
%Pore voxels have value of 1 
%Grain orientation voxels are integers > 1 
[sx, sy, sz] = size(spin); 
  
%Step 1: Remove small grains 
disp('removing small features...') 
  
tspin = int64(spin==1); 
tctr = 0; 
uids = unique(spin); 
for i = 1:length(uids) 
    if uids(i) ~= 1 
        t = sum(sum(sum(spin==uids(i)))); 
        %Identify small grains < 0.04% of total volume 
        tspin = tspin + uids(i)*int64(bwareaopen(spin==uids(i), 0.0004*(sx*sy*sz), 18)); 
        tctr = tctr + (t - sum(sum(sum(tspin==uids(i))))); 
    end 
end 
tspin(tspin==0) = 1; %Convert small grains to pores 
spin = tspin; 
disp([num2str(tctr), ' voxels removed.  ', num2str(tctr/(size(spin,1)*size(spin,2)*size(spin,3))), '% volume converted.']) 
  
%% Create mesh with functions from the ISO2MESH toolbox 
  
%Step 2: Mesh a box with initial max tetrahedral volume of 0.0001, size 
%scaled by 100 
[node,face,elem]=meshabox([0.0001,0.0001,0.0001], [sx/100, sy/100, sz/100], 0.0001, 0.0001);  
node = node*100; 
  
vol=elemvolume(node,elem(:,1:4)); 
disp(['Mean Tet Volume: ', num2str(mean(vol))]) 
nodeids = spin(sub2ind(size(spin), ceil(node(:,1)), ceil(node(:,2)), ceil(node(:,3)))); 
  
%Step 3: identify the domains (grain IDs or pores) that the nodes of each 
%tetrahedral belong to 
tetids = zeros(size(elem,1),4); 
for i = 1:length(elem) 
    tetids(i, :) = nodeids(elem(i,1:4)); 
end 
%Step 4: identify tetrahedrals that are not at grain boundary interfaces 
intids = (tetids(:,1)==tetids(:,2) & tetids(:,3)==tetids(:,4) & tetids(:,1)==tetids(:,3)); 
  
%Step 5: refine tetrahedrals that are at grain boundary interfaces 
[newnode, newelem,newface] = meshrefine(node,elem,(~intids)*20); 
node = newnode; elem = newelem; 
vol=elemvolume(node,elem(:,1:4)); 
disp(['Mean Tet Volume: ', num2str(mean(vol))]) 
  
%Repeat Step 3: For the new mesh, identify the domains (grain IDs or pores) 
%that the nodes of each tetrahedral belong to 
nodeids = spin(sub2ind(size(spin), ceil(node(:,1)), ceil(node(:,2)), ceil(node(:,3)))); 
tetids = zeros(size(elem,1), 4); 
for i = 1:length(elem) 
    tetids(i, :) = nodeids(elem(i,1:4)); 
end 
%Repeat Step 4: identify tetrahedrals that are not at grain boundary interfaces 
intids = (tetids(:,1)==tetids(:,2) & tetids(:,3)==tetids(:,4) & tetids(:,1)==tetids(:,3)); 
  
%Repeat Step 5: refine tetrahedrals that are at grain boundary interfaces 
vrefine = 3; 
[newnode, newelem,newface] = meshrefine(node,elem,(~intids)*vrefine); 
node = newnode; elem = newelem; face = newface; 
vol=elemvolume(node,elem(:,1:4)); 
disp(['Mean Tet Volume: ', num2str(mean(vol))]) 
  
%Step 7: Assign each tetrahedral to a domain according to the position of 
%its centroid 



centroids=meshcentroid(node,face(:,1:3)); 
face(:,4) = spin(sub2ind(size(spin), ceil(centroids(:, 1)), ceil(centroids(:,2)), ceil(centroids(:, 3)))); 
centroids=meshcentroid(node,elem(:,1:4)); 
elem(:,5) = spin(sub2ind(size(spin), ceil(centroids(:, 1)), ceil(centroids(:,2)), ceil(centroids(:, 3)))); 
voidpts = elem((elem(:,5)==1), 1:4); 
 


