

Optimization of an Explosive Mixture Cooling Process Including a Phase Change

J.-D. Wheeler¹, C. Coulouarn², E. Benade², P. NAMY¹

- 1. SIMTEC, 8 rue Duployé, Grenoble, 38100, France, +33 9 53 51 45 60 jean-david.wheeler@simtecsolution.fr
- 2. Thales TDA, Thales, La Ferté-Saint-Aubin, 45240, France christophe.coulouarn@thalesgroup.com

COMSOL CONFERENCE 2017 ROTTERDAM

that predicts, optimizes and innovates

SIMTEC, www.simtecsolution.fr

Certified Consultant

- French company, founded in 2006, 4 Ph. D. Engineers
- Experts in Modeling, COMSOL Certified Consultants:
 - CFD
 - Structural mechanics
 - Electromagnetism
 - Heat transfer
 - Chemical engineering
- Services:
 - Numerical modeling
 - Custom-made training sessions
 - Modeling assistance
- Main Clients:

that predicts, optimizes and innovates

1. Model description a) Challenge

Production of the **new** ammunition bodies with melt casting:

- Good solidification quality
- Minimum amount of experimental tests
- Exploring more cooling methods
- → COMSOL <u>numerical model</u> and application!

that predicts, optimizes and innovates

1. Model descriptiona) Challenge

that predicts, optimizes and innovates

Model description b) Geometry

The geometry is fully parametrised

1. Model descriptionc) Physics: the equation

Axisymmetric model

Heat equation solved:

$$\rho C_p \frac{\partial T}{\partial t} - \nabla \cdot (k \nabla T) = 0$$

1. Model descriptiond) Physics: the boundary conditions

Boundary condition: heat flux

$$q = h \cdot (T_{ext} - T)$$

With h, the HT coefficient which depends on:

- The area of the body
- The time
- The cooling fluid nature
- The cooling fluid velocity
- The cooling fluid temperature
- The convection conditions
- The presence of the plastic skin or not

With T_{ext} , the cooling fluid temperature

1. Model descriptione) Physics: the phase change

that predicts, optimizes and innovates

1. Model description

f) ONLINE HTTPS SECURED APPLICATION!!

Application screenshot: the environmental condition parameters

2. Computation / Validation

- COMSOL Server™
- On a SIMTEC https://https.server
- 2.8 GHz processor, 2 cores used for the resolution
- 4h computation time
- Experimentally validated: comparison with in-situ temperature measurements

that predicts, optimizes and innovates

3. Results a) A wide range of possibilities!

3. Results

b) Air cooling: velocity influence on cooling time

Influence of the air velocity on the cooling time

 \rightarrow Threshold effect identified between x and y m/s

3. Results

c) Water cooling conditions: quality analysis

that predicts, optimizes and innovates

Conclusion

Solidification front evolution predictions

For many cooling conditions

Remote and secured computations

Resulting in: THALES GROUP

Faster process optimisation

Development of new processes