

KTH Chemical Science and Engineering

Modelling of the Mass Transport Phenomena in Li-ion Battery Electrolytes

Andreas Nyman, Mårten Behm and Göran Lindbergh Applied Electrochemistry School of Chemical Science and Engineering Royal Institute of Technology, KTH Stockholm, Sweden

Lithium-Ion Batteries

Two types of commercial batteries:

- Conventional lithium-ion batteries, commercialised 1991 (80% of the market)
- Lithium-ion polymer batteries, commercialised around 1996 (20% of the market)

KTH Chemical Science and Engineering

The Lithium-Ion Battery

Electrolyte

 LiPF₆ dissolved in ethylene carbonate (EC), propylene carbonate (PC) and poly(vinylidene fluoride-cohexafluoropropylene) (PVdF-HFP)

> EC:PC (6:4) Random P(VdF-HFP)

KTH Chemical Science and Engineering

Propylene carbonate (PC)

Ethylene carbonate (EC)

PVdF-HFP Poly(vinylidene diflouride co hexafluoropropylene)

Model

$$\frac{c_i}{RT} \frac{\partial \mu_i}{\partial x} = \sum_{k \neq i} \frac{c_i c_k}{c_{tot} D_{ik}} (v_k - v_i)$$

$$\sum_i c_i V_i^m = 1$$

$$i = Li^+, PF_6^-, EC / PC \& P(VdF - HFP)$$

KTH Chemical Science and Engineering

$$\dot{i}_{F} = F\left(N_{Li^{+}} - N_{PF_{6}^{-}}\right)$$
$$c_{Li^{+}} = c_{PF_{6}^{-}} = c_{LiPF_{6}}$$
$$\mu_{Li^{+}} = F\Phi$$

Current

Model

KTH Chemical Science and Engineering

$$\frac{\partial \Phi}{\partial x} = -\frac{i}{\kappa} + \eta_1 \frac{\partial c_{LIPF_b}}{\partial x} + \eta_2 \frac{\partial c_{EC-PC}}{\partial x}$$

$$\frac{\partial c_i}{\partial t} = -\frac{\partial N_i}{\partial x} + R_i$$

Model

•

•

 Galvanostatic polarization model Uniform concentration at t=0 Fluxes at the boundaries are known: N_{PF6-}=N_{EC:PC}=0

- Solvent and salt diffusion model Uniform concentration at t=0 Concentrations at the boundaries are known
- PDE-mode in Comsol Multiphysics One-dimensional Time dependent solver
- The models were compared to experimental data

Experimental Techniques

Techniques used in this study:

- Density measurements
- Conductivity measurements
- Concentration Cells
- Galvanostatic Polarisation
- Solvent and salt diffusion measurements

Other Techniques:

- Hittorf's method transport numbers referenced to the Hittorf frame
- Electrophoretic NMR
 velocities of species
- PFG-NMR self-diffusion coefficient
- Raman Spectroscopy
 time dependent concentration profiles

8

Concentration Cells and EIS

Optimization

Galvanostatic Polarisation Experiments

Diffusion Experiments

Introduction - Experimental Methods - Results - Conclusions

Results

Results

KTH Chemical Science and Engineering

К 0.17 S/m	D_{satt}^{satt} 10 ^{-9.80} m ² /s	D_{solv}^{mb} 10 ^{-9.11} m ² /s	t_{+}
t_{wb}	d _{sub}	d _{setv}	0.25
-0.65	-0.78	-0.22	
η_I		η_2	
1.23*10 ⁻⁴ Vm ³ /mol		-9.43*10 ⁻⁶ Vm ³ /mol	

Transport properties for a P(VdF-HFP)-EC-PC-LiPF₆ gel. 5 % LiPF₆, 40 % P(VdF-HFP) and 60 % EC-PC (by weight)

$$\begin{bmatrix} N_{LIP_{i}} \\ N_{RC-PC} \end{bmatrix} = -\begin{bmatrix} D_{adl}^{adl} & d_{adl} \cdot D_{adl}^{adl} \\ d_{adl} \cdot D_{adl}^{adl} & D_{adl}^{adl} \end{bmatrix} \begin{bmatrix} \frac{\partial c_{LIP_{i}}}{\partial x} \\ \frac{\partial c_{RC-PC}}{\partial x} \end{bmatrix} + \begin{bmatrix} -\frac{(1-t_{i})i}{F} \\ \frac{t_{adl}i}{F} \end{bmatrix} \qquad \frac{\partial \Phi}{\partial x} = -\frac{i}{\kappa} + \eta_{1} \frac{\partial c_{LIP_{i}}}{\partial x} + \eta_{2} \frac{\partial c_{EC-PC}}{\partial x} \end{bmatrix}$$

Results

Summary

- The mass transport phenomena of a LiPF₆-EC-PC-P(VdF-HFP) gel was characterized and modeled at 298 K.
- Two types of models were implemented in Comsol. A galvanostatic polarization model (constant fluxes at the boundaries) and a salt and solvent diffusion model (constant concentrations at the boundaries).
- Two diffusion coefficients, two transport numbers and two drag coefficients were all calculated by fitting the models to experimental data.
- The conductivity was obtained from electrochemical impedance measurements while the two diffusion potential coefficients were directly calculated from concentration cell data.
- The solvent diffusion potential was relative small compared to the ohmic potential drop and the salt diffusion potential.

Acknowledgements

Transport Properties and Thermodynamic Properties

Introduction - Experimental Methods - Results - Conclusions

KTH Chemical Science

and Engineering