Resonances in Tapered Double-Port TEM Waveguides

Prof. Dr.-Ing. Jens Peter Kärst

H/W<

Hochschule für Angewandte Wissenschaft und Kunst Fakultät N

COMSOL Multiphysics Konferenz 6. November 2008

Contents

Introduction

Analytical calculation

Simulation

Measurements

Introduction

Introduction

Analytical calculation

What are

What are we talking about?

What did we calculate?

Why could this be interesting for you?

Simulation

Measurements

Small tapered double-port TEM waveguides

- \blacktriangleright μ TEM cell, PTB, German \vec{E} -field standard
- \blacktriangleright μ C³ cell, proposed Circular Coaxial Calibration cell

Mechanical construction, Crawford TEM cell

- ► Rectangular cross section
- ► Flat inner conductor (Septum)

Mechanical construction, μC^3 cell

- ► Circular cross section
- ► Round inner conductor (Septum)

Introduction

Analytical calculation

Genera

Generalized telegraphist's equations Resonance calculation

Analytical calculation

Simulation

Measurements

Field modes, transversal \vec{E}

Field modes, transversal \vec{E}

Field modes, transversal \vec{H}

Jens Peter Kärst Resonances in TEM Waveguides

Jens Peter Kärst Resonances in TEM Waveguides

Generalised telegraphist's equations for mode p

Using propagation constant $\gamma^{(p)}$ and wave impedance $Z_{W}^{(p)}$:

$$\frac{dV^{(p)}}{dz} = -\gamma^{(p)}(z)Z_W^{(p)}(z)I^{(p)}(z) + \sum_{q=1}^{\infty} C_{pq}(z)V^{(q)}(z)$$
$$\frac{dI^{(p)}}{dz} = -\frac{\gamma^{(p)}(z)}{Z_W^{(p)}(z)}V^{(p)}(z) - \sum_{q=1}^{\infty} C_{qp}(z)I^{(q)}(z)$$

Neglecting mode coupling using wavenumber $k = \omega \sqrt{\mu \varepsilon}$:

$$\frac{\mathrm{d}^2 V_k^{(\mathsf{TE})}}{\mathrm{d}z^2} = \left(k_c^{(\mathsf{TE})^2}(z) - k^2\right) V_k^{(\mathsf{TE})}(z)$$

$$\frac{\mathrm{d}^2 I_k^{(\mathsf{TM})}}{\mathrm{d}z^2} = \left(k_c^{(\mathsf{TM})^2}(z) - k^2\right) I_k^{(\mathsf{TM})}(z)$$

$I^{(TM)}(z)$ of TM_{01} at resonance in a μC^3 -cell

$I^{(TM)}(z)$ of TM_{01} at resonance in a μC^3 -cell

Second resonance at $f_{res} = 5.001 \text{GHz}$

Introduction

Simulation

Analytical calculation

MATLAB/NAG simulation FEMLAB simulation

Simulation

Measurements

Simulation using generalised telegraphist's equations

Longitudinal component of the electric field \vec{E}

Below resonance at f = 1GHz

Longitudinal component of the electric field \vec{E}

At first TM_{01} resonance $f_{TM_{011}} = 4.4$ GHz

Longitudinal component of the electric field \vec{E}

At second TM₀₁ resonance $f_{\text{TM}_{012}} = 4.9 \text{GHz}$

Simulation using FEM model, FEMLAB with RF toolbox

Introduction

Measurements

Analytical calculation

Comparison with analytical calculations Comparison with simulation results

Simulation

Measurements

Simulation using FEM model, FEMLAB with RF toolbox

Introduction

Conclusion

Analytical calculation

Simulation

Measurements

- An analytical method for the calculation of resonant frequencies has been presented
- ► A comparison of results obtained using two different simulation methods
 - Generalised telegraphist's equations (MATLAB with NAG toolbox)
 - 2. FEM model (FEMLAB with RF toolbox) and measurents shows close agreement
- ▶ Simulations can be benchmarked using this analytical method

