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Abstract: In this work the effective elastic 

properties of a SU8 photoresist matrix reinforced 

with ZnO nanomaterial (in the form of 

cylindrical nanowires, spherical and ellipsoidal 

particles) have been evaluated employing 

COMSOL Multiphysics®. The Solid Mechanics 

Physics of Structural Mechanics module is used 

in this work for the stationary study of three-

dimensional representative volume elements. 

Effective elastic properties of the composite such 

as longitudinal elastic modulus (E1), transverse 

elastic modulus (E2), axial shear modulus (G12), 

and transverse shear modulus (G23) are obtained 

by employing homogeneous displacement 

boundary conditions for different volume 

fractions of reinforcement material ranging from 

zero to a maximum of 0.7. The effect of various 

parameters such as volume fraction, continuity, 

and shape of the reinforcement on the effective 

elastic properties of the nanocomposite are 

presented. 

Keywords: nanocomposites, effective 

properties, representative volume element (RVE) 

1. Introduction

Integration of nanomaterials in the form of 

nanoparticles and/or nanowires to microsystems 

technologies can lead to a new generation of 

devices with novel functionalities. One way to 

integrate nanomaterials with MEMS is by using 

nanocomposites as structural components of 

these devices. A nanocomposite consisting of a 

negative photoresist SU8 as the matrix, and zinc 

oxide (ZnO), a piezoelectric nanomaterial (in the 

form of nanowires, and/or nanoparticles) as the 

reinforcement, is a promising candidate for 

applications in energy-harvesting microdevices 

[1]. Proper design of the micro/nanodevices 

requires the knowledge of the effective material 

properties of the nanocomposite. The properties 

of interest are the effective elastic properties and 

the effective dielectric properties of the 

polymer/ZnO composite. As a first step towards 

predicting the effective properties of a 

piezoelectric composite, in this work an effort 

has been made to calculate the effective elastic 

properties of a SU8/ZnO composite, using finite 

element method (FEM). 

Prediction of effective properties of composites 

using FEM method is an active area of research. 

Sun and Vaidya established a micromechanics-

based foundation for predicting the effective 

properties of unidirectional composites by 

performing finite element analysis of 

representative volume elements (RVEs) [2]. 

Boundary conditions in the form of 

homogeneous displacement, homogeneous 

traction, and  periodic boundary conditions have 

been applied to RVEs to evaluate teir effective 

properties [3]. Appropriate unit cells and 

corresponding homogeneous boundary 

conditions have been identified by Li for the 

finite element analysis of unidirectional periodic 

composites [4, 5].  In this study, homogeneous 

displacement boundary conditions have been 

employed on a cubic RVE to evaluate effective 

properties of unidirectional composites. 

COMSOL Multiphysics is used due to the ease 

of applying boundary conditions.  

This manuscript is organized in the following 

fashion. Section 2 discusses the  theory of linear 

elasticity, as applicable for heterogeneous 

materials. The RVE is introduced, and boundary 

conditions required for the estimation of elastic 

properties are described explicitly in section 3. 

Section 4 lists the material properties of the 

constituent phases. The variation of the effective 

elastic properties of the composite as a function 

of volume fraction of the reinforcement phase is 

presented in section 5. 

2. Theory

According to the theory of linear elasticity, the 

interaction between the stress field and the strain 

field of a homogeneous  material can be 
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expressed by the following constitutive 

relationship: 

klijklij C   .          (1) 

Here  is the stress tensor,  is the strain tensor, 

and C is the fourth order stiffness tensor, and the 

indices i, j, k, and l range from 1-3. However, in 

general, materials such as composites are 

heterogeneous. One can relate the volume 

averaged stress field ( ) of a heterogeneous 

material to the volume averaged strain field (  )  

by the effective stiffness tensor 
effC i.e. 

kl

eff

ijklij C   (2) 

For a composite, the effective stiffness tensor is a 

function of the elastic properties, geometry, 

orientation and spatial distribution of the 

constituent phases. Several micromechanical 

approaches have been developed for predicting 

effective properties of composites using 

information of the individual constituents. Most 

notable among these approaches is the Eshelby-

Mori-Tanaka approach [6], where the 

stress/strain fields in the constituent phases are 

considered to be uniform. Moreover, these 

approaches are unable to take into account 

complicated geometries and the spatial 

distribution of the reinforcement phases. On the 

other hand, approaches based on finite element 

method provide a more realistic prediction of the 

effective properties by taking into account the 

geometries of the constituent phases and the non-

uniform stress/strain fields in the constituent 

phases. The first step towards prediction of 

effective properties of composites is to select an 

appropriate a representative volume element or a 

unit cell. This representative volume element 

must be large enough to contain all 

microstructural information  but should be small 

enough compared to the structure under study. 

Using FEM the volume-averaged stresses and 

strains can be calculated as 
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In equations (3) - (4), V is the volume of the 

RVE, nel is total number of finite elements in the 

RVE,      is the volume of the n
th

 element,  

is ij
th

 component of the stress tensor calculated in 

the n
th

 element, and    
   

 is ij
th

 component of the 

strain tensor calculated in the n
th

 element. 

Boundary conditions are applied on the surfaces 

of the RVE. In the case of a cubic RVE there 

would be six sets of boundary conditions. For 

homogeneous applied strain     
  , the boundary 

conditions applied on the surfaces of the cube are 

of the form       
   , where xj refers to the 

coordinates of the surfaces of the RVE. The 

components of the strain tensor,     are related to 

the displacements ( by 

The calculation of the effective elastic properties 

of the composite is performed from the values of 

ij and ij calculated under appropriate 

boundary conditions. The boundary conditions 

applied on the RVE to calculate effective axial 

modulus (E1), effective transverse modulus (E2), 

effective axial shear modulus (G12), and effective 

transverse shear modulus (G23) are presented in 

the next section. 

3. RVE and Boundary Conditions

A discussion of boundary conditions requires a 

description of the RVEs. All RVEs considered in 

this study are cubic in shape, with cube-edge 

(2a) of  120 nm. The origin of the coordinate 

system, and the centroid of the reinforcement 

coincide with the centroid of the cube. There are 

three mutually orthogonal mirror planes through 

the centre of the RVE. Four different types of 

RVEs based on the geometry and continuity of 

reinforcements are considered in this study. All 

composites considered in this study are 

unidirectional. RVE1 represents a continuous 

nanorod composite, while RVE2 represents a 

discontinuous composite reinforced with long 

cylindrical ZnO nanorods with aspect ratio 

(length:diamter) of 1.2:1. RVE3 represents a 

spherical ZnO nanoparticle reinforced 

composite, and RVE4 represents a composite 

reinforced with ellipsoidal ZnO nanoparticle. 

Figure 1 shows the RVEs considered in this 

study. Due to the symmetric geometries of the 

RVEs, only one-eighth of the full RVEs are 

needed for the finite element analysis. The 

boundaries of the reduced structures are: 

B1: x = 0, 0 ≤ y ≤ a, 0 ≤ z ≤ a, n = (-1, 0, 0) 

B2: x = +a, 0 ≤ y ≤ a, 0 ≤ z ≤ a, n = (1, 0, 0) 

B3: y = 0, 0 ≤ x ≤ a, 0 ≤ z ≤ a, n = (0, -1, 0) 

B4: y = +a, 0 ≤ x ≤ a, 0 ≤ z ≤ a, n = (0, 1, 0) 

B5: z = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ a, n = (0, 0, -1) 

B6: z = +a, 0 ≤ x ≤ a, 0 ≤ y ≤ a, n = (0, 0, 1) 
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Figure 1. Images of full unidirectional RVEs: (a) 

RVE1 for a continuous  composite with cylindrical 

reinforcement; (b) RVE2 for a discontinuous 

composite with cylindrical reinforcement, and the 

ratio of length to diameter is 1.2:1; (c) RVE3 for a 

discontinuous composite with a spherical 

reinforcement; (d) RVE4 for a discontinuous 

composite with an ellipsoid as the reinforcement, and 

the semi-axes are in the ratio of 1.5:1.25:1;  

Here, n represents the normal vector to the 

corresponding boundary. The components of the  

vector along x, y and z directions are provided in 

within brackets.  The boundary conditions for the 

prediction of effective elastic properties of the 

composite are provided in table 1. Here 
0
 is the

applied strain, while 
11
 , 22 , and 33 are

unknown volume-averaged normal strains which 

should be left free. This is accomplished in 

COMSOL Multiphysics using the following 

procedure.  

First, a volume integration operator, intop1 is 

defined for the entire domain. Next, the volume 

averaged unknown strains are calculated as: 

 dV
V

1111

1
 intop1(solid.eXX)/(a*a*a) 

(5) 

Similarly, 

22 = intop1(solid.eYY)/(a*a*a) (6)

and 

33 = intop1(solid.eZZ)/(a*a*a) (7)

Here solid.eXX, solid.eYY and solid.eZZ are 

strains calculated in the global coordinate 

system.  

The RVEs are meshed using tetrahedral 

elements, and the finite element model is solved 

using the iterative multigrid solver. Post-

processing involves evaluation of volume-

averaged stresses and strains. The effective 

properties can next be calculated using the 

following equations: 

11

11

1



E (8) 

22

22

2



E (9) 

12

12

12
2


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23
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2


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22

12



  (12) 

22
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


  (13) 

Property B1 B2 B3 B4 B5 B6 

E1, ν12 
0u

0
au  0v

22
av  0w

33aw 

E2,  ν23 0u
11au  0v

0av  0w
33aw 

G12 0

0





w

v

0

0





w

v

0

0





w

u

0

2 0





w

au  0w 0w

G23 
0u 0u

0

0





w

u

0

0





w

u

0

0





v

u

02

0

av

u





Table 1: Boundary conditions for evaluating the effective elastic properties 
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4. Material Properties 

 

The matrix, SU8 is considered to be isotropic, 

with Young’s modulus,             , and 

Poisson’s ratio           [7]. The 

reinforcement, ZnO is considered to have a 

wurtzite crystal structure, which is transversely 

isotropic. The plane of isotropy of ZnO is 

considered to be parallel to the y-z plane, while 

the c-axis of ZnO coincides with the x-axis of the 

global coordinate system. The coefficients of the 

stiffness matrix of ZnO is available in literature 

[8] where the c-axis of ZnO coincides with the z-

axis of the global coordinate system. Hence, the 

resultant coefficients applicable in this study was 

obtained after appropriate coordinate 

transformations. Table 2 provides the 

coefficients of the stiffness matrices of SU8 and 

ZnO used in this work. 

 

Table 2: Coefficients of the stiffness matrices of the 

constituent phases of the composite 
 

Coefficient SU8 ZnO 

C11 5.023 GPa 210.9 GPa 

C12 1.417 GPa 105.1 GPa 

C13 1.417 GPa 105.1 GPa 

C23 1.417 GPa 121.1 GPa 

C33 5.023 GPa 209.7 GPa 

C44 1.803 GPa 44.29 GPa 

C55 1.803 GPa 42.47 GPa 

C66 1.803 GPa 42.47 GPa 

 

5. Results and Discussions 

 
The effect of volume fraction of ZnO on the 

effective elastic properties of the SU8/ZnO 

nanocomposites are presented in this section. For 

RVE1, volume fraction increases by increasing 

the radius of the cylindrical reinforcement. The 

maximum volume fraction of reinforcement for 

RVE1 is ~0.78. In the case of RVE2, the 

reinforcement is in the form of a cylinder as 

well. However, the length:diameter ratio of the 

cylindrical reinforcement is maintained at 1.2:1 

for all volume fractions. The maximum volume 

fraction for RVE2 is ~0.54. As mentioned 

earlier, RVE3 has a spherical reinforcement, and 

the maximum volume fraction is ~0.52. RVE4 

has an ellipsoid with semi-axes ratio a:b:c = 

1.5:1.25:1 as the reinforcement. The maximum 

volume fraction of reinforcement is limited to 

~0.29. In this study for the ease of meshing, we 

have considered volume fractions in the range of  

0 - 0.7 for RVE1, in the range of 0 - 0.52 for 

RVE2 and RVE3, and in the range of 0 - 0.26 for 

RVE4. 

 

 
Figure 2. Variation of axial modulus as a function of 

volume fraction of ZnO. 

 

Figure 2 shows the effect of volume fraction on 

the axial modulus of Su8/ZnO composites. It is 

observed that the continuous composite exhibits 

higher axial modulus compared to the 

discontinuous composites. Among the 

discontinuous composites, the composite 

reinforced with spherical particle exhibits the 

lowest axial modulus at any volume fraction in 

the range of 0 - 0.52. The discontinuous 

composites with cylindrical and ellipsoidal 

reinforcements have similar values for axial 

modulus at low volume fractions in the range of 

0 - 0.26. 

 

 
Figure 3. Variation of transverse modulus as a 

function of volume fraction of ZnO 

 

Figure 3 shows the effect of volume fraction on 

the transverse modulus of SU8/ZnO composites. 

The continuous composite exhibit the least 

values of transverse modulus when compared to 
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the discontinuous composite. For low volume 

fractions in the range of 0 - 0.26, the values 

predicted for the discontinuous composites are 

similar. Beyond the volume fraction of ~0.26, 

the discontinuous composite with spherical 

reinforcement exhibit higher transverse modulus 

compared to the discontinuous composite with 

cylindrical reinforcement.  

Figures 4 and 5 show the effect of volume 

fraction on the effective axial shear modulus and 

on the effective transverse shear modulus of the 

Su8/ZnO composites. The axial shear modulus is 

less sensitive to continuity and geometry of the 

reinforcement compared to the other effective 

elastic moduli. In the case of the transverse shear 

modulus, it is observed that composite with 

reinforcement in the form of spherical particles 

exhibit the highest values and the continuous 

composite has the least value for the volume 

fractions considered. This trend is similar to that 

observed for transverse modulus, as shown in 

figure 3.  

 

 
Figure 4. Variation of axial shear modulus as a 

function of volume fraction of ZnO 

 

Figure 6 shows the effect of volume fraction on 

the Poisson's ratio 
12

 for the different RVEs 

considered. While the continuous composite 

exhibits a monotonic increase in 
12

 with an 

increase in volume fraction, the discontinuous 

composites with spherical and with ellipsoidal 

reinforcements show a decrease in 
12

 for the 

ranges of volume fractions considered. For the 

discontinuous composite with cylindrical 

reinforcement,
12

 first decreases, reaches a 

minimum value at volume fraction of 0.4, and 

finally increases as the geometry tends towards a 

continuous composite at higher volume fractions. 

Similar complex dependence of the Poisson's 

ratio 
23

  on volume fraction of ZnO is shown in 

figure 7. 
 

 
Figure 5. Variation of transverse shear modulus as a 

function of volume fraction of ZnO 

 

 

 
Figure 6. Variation of Poisson's ratio ν12 as a function 

of volume fraction of ZnO 

 

 

 
Figure 7. Variation of Poisson's ratio ν23 as a function 

of volume fraction of ZnO 
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6. Conclusions 

 
COMSOL Multiphysics has been used to predict 

the effective elastic properties of SU8 photoresist 

reinforced with ZnO in various geometries. 

Representative volume elements for 

unidirectional continuous and discontinuous 

composites were defined in the form of a cube 

with edge length of 120 nm. Homogeneous 

displacement boundary conditions based on the 

symmetry of the RVEs were employed. Finite 

element analyses of the RVEs predict that 

continuous composites exhibit the maximum 

effective axial modulus and the maximum 

effective Poisson's ratios 
12

 and 
23

 , but  the 

minimum effective transverse modulus and the 

minimum effective transverse shear modulus in 

the range of volume fractions of 0 - 0.52. The 

discontinuous composite with spherical 

reinforcement exhibits the minimum value in 

terms of the effective axial modulus, but the 

maximum values for effective transverse 

modulus and the effective transverse shear 

modulus, in the same range of volume fractions. 

Axial shear modulus is less sensitive to geometry 

and continuity of the reinforcements, compared 

to the other effective elastic properties. The 

discontinuous composites with ellipsoidal 

reinforcement have similar values as those with 

cylindrical reinforcements, especially at low 

volume fractions. 
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