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Abstract: Particle-particle interactions are 

usually neglected when considering the beha-

viour of magnetic particles so called magnetic 

beads in e.g. a microfluidic device. However, if 

the particle density exceeds a critical limit, this 

assumption might not lead to proper results 

anymore. In this paper the particle-particle 

interaction of magnetic beads in an external 

magnetic field will be discussed. It is shown that 

the magnetic force acting on the particles will 

lead to very high particle velocities. Therefore, 

apart from the magnetic interaction, their fluidic 

forces are also of concern. These two contribu-

tions will be compared. 

Because of high local Reynolds numbers close to 

the particles a very fine local mesh is needed. 

The mesh deformation due to the particle move-

ment is described within an ALE-framework 

with the help of a second domain triangulation 

using linear finite element shape functions. 
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1. Introduction 
 

Predicting the behaviour of magnetic par-

ticles in microfluidic systems (e.g. lab-on-a-chip-

systems) an often made simplifying assumption 

is that particle-particle interaction can be ne-

glectted [1,2]. Experimentally, this can be easily 

achieved by working with low concentrations. 

However, this constraint will lead to longer time 

scales for applications, whereas it cannot be 

assured that there are no areas where particles 

cluster together to higher concentrations. There-

fore, it is also interesting to study the behaviour 

of systems, where the assumption of low con-

centration does not hold. 

In order to make proper predictions on par-

ticle behaviour in highly concentrated dilutions, 

we will investigate a system of superparama-

gnetic particles in an external field, moving 

because of their magnetic interactions as well as 

particle-fluid interactions. 

 

 

2. Governing equations 
 

The investigated particles are supposed to be 

superparamagnetic, i.e. the magnetization of the 

particles is aligned with the external field. In 

particular, we will restrict our analysis to single-

domain spherical particles. Therefore, we may 

write the resulting particle stray field as a 

function of the external magnetic field Bex. The 

stray field B of a sphere with radius R can be 

written as [3]: 
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θ = � r B  and Ms denotes 

the saturation magnetization of the particle ma-

terial. The particle magnetization Mi of the i-th 

particle Pi will be influenced by the stray field Bj 

of other beads. Particularly, a torque ττττi and a for-

ce Fmag,i is exerted. These are given by the follo-

wing integrals taken over the whole particle 

domain 
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The force acting on the particles results in the 

motion of the beads. From a hydrodynamic point 

of view the particle boundaries can be regarded 

as moving “walls”, where a common assumption 

for the velocity is, that the liquid directly located 

to these, moves with the velocity of the wall 

itself (no-slip-condition). Therefore, the particle 

movement will induce a fluid flow nearby, in-

fluencing further particles. Thus, the behaviour 

of the fluid has to be discussed as well.  

Commonly, it is sufficient to discuss the line-

arized Stokes-Equation to describe the fluid be-

haviour on the micro- or nanoscale. However, as 

we will see, in the particular case, full Navier-

Stokes equations have to be considered, i.e. the 
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equation of continuity representing the conserva-

tion of mass 

 

 0∇ ⋅ =u ,        (2.4) 

 

where u is the velocity field, and the Navier-

Stokes equation, the equation of momentum con-

servation 
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Here p denotes the pressure field, η and ρ are the 

viscosity and the density of the fluid, respec-

tively, and f is the force density acting on the 

liquid, i.e. the force from the particles. With the 

values of B, u and p the motion of the particles 

can be derived from the following system of 

ordinary differential equations 
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By the index i, we indicate the i-th particle, 

where the following assignments are used 

 

 mi  mass of i-th particle 

 Fi,fluid fluidic forces acting on i-th particle 

 Fi,mag magnetic forces acting on i-th particle 

 Fi,pen penality forces acting on i-th particle,  

preventing particles from overlapping 

 

As the Reynolds number can reach high local 

values we cannot use Stokes drag law for Fi,fluid, 

but have to apply the more general Khan-

Richardson force [4] 
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The penality force term is modelled with the help 

of a step potential constant on the particles and 

zero outside. 

3. Moving mesh definition  
 

As already mentioned before, full Navier-

Stokes equations have to be discussed in the 

model, because we will see that the magnetic 

forces acting on the particles lead to high 

velocities. Thus, in this particular model high 

local Reynolds numbers can be reached, though 

investigating a system on the microscale. It is 

therefore necessary to have an appropriate mesh 

resolution close to the particles themselves. As 

the particles move, the mesh has to be moved as 

well, which will be done in an ALE-framework. 

Expecting the mesh velocity to equal the par-

ticle velocity on the particles and changing line-

arly in between, we come to a second domain 

triangulation, where the nodes are the particles, 

while the edges are the connections between 

certain neighboring beads (s. Fig. 1). Expecting 

the nodes of the triangle to be given by r1, r2 and 

r3 with 
 

( , )
T

i i i
r x y=   i = 1, 2, 3,   (3.1) 

 

we can parameterize the triangles by parameters 

s1 and s2 by mapping the triangle onto the two 

dimensional simplex S2. Using the affine map-

ping 
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Fig. 1: Second domain triangulation defined by par-

ticle positions, the movement of the colored triangle is 

determined by the velocity of the particles in the 

corners. The triangulation itself is determined by 

Delaunay algorithm 



it can be shown that 
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Suitable functions to model the mesh velocity as 

given below are thus given by the hat functions 
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The functions d are 1 at x1, 0 at x2 and x3 and 

linear in between (s. Fig. 2).  

However, this choice leads to difficulties 

concerning numerical stability resulting from a 

strongly decreasing element quality of the 

original FEM-mesh. To overcome these pro-

blems slightly modified laws are applied: 
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Fig. 2: Schematic drawing of the shape functions 

where θ1 and θ2 are numerical parameters that 

will not discussed here in detail. The final ex-

pression describing the mesh displacement is 

given by summation over all nodes i. If the ALE-

coordinates of a particle at spatial point ri is 

given by ξi, the displacement ∆r of an initial 

coordinate r may be written as 
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Expression (3.6) is used for the mesh movement. 

Therefore, the ALE-application mode does not 

lead to any degrees of freedom to be solved for. 

 

 

4. Simulation results 
 

4.1 Particle behaviour 

 

In our model situation, we expect superpara-

magnetic particles in a magnetic field rotating 

with a constant frequency f around the z-axis. As 

already mentioned before, a high spatial resolu-

tion is needed close to the particles. To achieve 

this we expect the particles to be point-like and 

choose the maximal element size at these points 

not to exceed 10
-3

 times the geometry size scale. 

The resulting mesh for a 2-particle case is shown 

in Fig. 3a. Dealing with point-like particles, the 

force density f in equation (2.5) goes over to a 

sum over point forces at position of the particles 
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where pi is the position of the i-th particle and fi 

the density derived from (2.7). The force terms 

are implemented by additional weak point-terms.  

 

 
 

Fig. 3: Initial mesh and mesh at time t = 10-4s 



 
 

Fig. 4: Behaviour of the particle distance in respect to 

the field frequency for the case of a particle of radius 

a) 10µm and b) 20µm  

 

The calculations were carried under the as-

sumption of a particle mass density of 2500kg/m³ 

and a saturation magnetization of 1000kA/m. The 

carrier liquid is supposed to be water at room 

temperature, therefore, we expect a viscosity η = 

1.002 ⋅ 10
-3

Pa s and density ρflui = 998.2kg/m³. 

Starting with only two particles of radius r, we 

observe the following frequency dependent 

distance behaviour (Fig. 4): at low frequencies 

the distance of the particles strongly decreases 

and remains constant after a while. In this 

frequency area, the particles stick together and 

form rod-like agglomerations (Fig. 5) which also 

can be found experimentally. At very high fre-

quencies particles oscillate against each other.  

However, due to a very rapidly changing magne-

tic field, the particles migrate close to their initial 

position. The average distance in respect to time 

a particle moves is close to zero. From Fig. 4 we 

learn that there is clearly a critical frequency 

 
 

 
 

Fig. 5: Chain creation at low field frequencies 

 
 
Fig. 6: Particle velocities for particle of radius r = 

10µm for different field frequencies 

 

area, where the particles are pushed apart (~ 

25kHz for particles of radius 10µm and ~ 10kHz 

for particles of radius 20µm). This area changes, 

if particles of different size are investigated as 

can be seen in Fig. 4b. Similar results are ob-

tained, if different values for the magnetization 

Ms are discussed. 

Regarding the motion of the particles, it is 

interesting to notice that the particle on the mi-

croscale can actually reach macroscopic veloci-

ties (Fig. 6). Thus, it is not clear anymore, if 

magnetic or hydrodynamic interaction is the 

main force contribution at long distances. 

 

 

4.2 Comparison between interactions 

 

For the systems analyzed above, the two dif-

ferrent force contributions are to be compared. In 

this case we expect two particles of a radius r = 

1µm, whereas all other material parameters are 

chosen as above. The initial configuration equals 

the situation shown in Fig. 3. Applying a magne-

tic field of frequency f = 50kHz the particles 

oscillate close to their initial position inducing a 

velocity profile as shown in Fig. 7. 

Expecting a third particle with radius a) r, b) 

0.75r and c) 0.5r different degrees of importance 

of hydrodynamic and magnetic interactions can 

be found. Fig. 8 shows the areas where different 

forces are dominant. Blue areas correspond to 

magnetic, red to hydrodynamic contributions. A 

green coloring indicates the areas where both 

forces are of similar order. In all cases the hydro-

dynamic forces gain importance at long range. 



 
 
Fig. 7: Velocity profile resulting from particle move-

ment at t = 10-4
s for the parameters r = 1µm, Ms = 

1000kA/m and  f = 50kHz  

 

It is also remarkable that the hydrodynamic 

forces are independent of the saturation magne-

tization of the third particle. Therefore, hydro-

dynamic interactions even gain more importance, 

if particles of different magnetic moments are 

discussed. 

 

 

5. Conclusions and Outlook 
 

In the present work, we have shown that for 

magnetic particles in a rotational magnetic field 

not only the magnetic but also the hydrodynamic 

interactions are of importance.  

Furthermore, the results obtained in the cal-

culations indicate that the modeling of particles 

immersed in fluid flows with external magnetic 

fields as “free particles” might lead to wrong re-

sults, as even over distances of several times the 

particle diameter, strong magnetic as well as 

hydrodynamic interactions can be found.  

 

 

 
 
Fig. 8: Dominant force contribution plot, blue areas 

correspond to dominant magnetic forces, red to domi-

nant fluidic contributions 
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