

Transient CFD investigation of a photocatalytic multi-tube reactor

J. van Walsem, J. Roegiers, S. Lenaerts & S. Denys

Is your building sick?

Most businesses don't know...

Introduction

- Sick Building Syndrome (SBS)
 - Accumulation of pollutants (VOCs, NOx, CO,...)
 - Stringent heat-insulation measures
 - Insufficient ventilation
 - People spend 90% of their time indoors
- Possible solutions
 - Source control
 - Ventilation
 - Air purification
- Our goal
 - Integration of photocatalytic reactor in ventilation systems

Photocatalysis: Applications

Water purification/desinfection

Air purification

Self-cleaning materials

Photocatalysis: How does it work?

- Photocatalysis in our application:
 - Activation of a photocatalyst to degrade indoor air pollution (VOCs)
 - Catalyst: increases reaction rate without being consumed

Substrate

- ✓ Cost-effective
- ✓ No waste steams
- ✓ Mild reaction conditions

Experimental setup

Experimental data (FTIR)

Comsol Multiphysics: *Geometry*

Comsol Multiphysics: *Meshing*

User-controlled mesh:

- 54.000 prism elements
- 18.000 tetrahedral elements

Comsol Multiphysics: Laminar flow (spf)

Stationary solver:

Comsol Multiphysics: Transport of diluted species (tds)

Time-dependent solver:

- \triangleright Pollutant concentration ($C_{Acal,bulk}$) coupled with the laminar flow
- \triangleright Adsorption defined as a flux from bulk to boundary (N_{ads})
- \triangleright **Desorption** defined as a flux from boundary to bulk (N_{des})

1.
$$-\mathbf{n} \cdot (-D\nabla C_{Acal,bulk} + \mathbf{u} \cdot C_{Acal,bulk}) = -N_{ads} + N_{des}$$

2.
$$N_{ads} = k_{ads}C_{Acal,bulk}(1 - \theta_{Acal})$$

3.
$$N_{des} = k_{des}\theta_{Acal}$$

Comsol Multiphysics: Boundary ODE (bode)

- Time-dependent solver:
 - **Photocatalytic reaction rate** (R_{pco})
 - \triangleright Acetaldehyde surface concentration ($C_{Acal,ads}$)
 - 1. $R_{pco} = k_{pco}C_{Acal,ads}$

2.
$$\frac{\partial C_{Acal,ads}}{\partial t} = N_{ads} - N_{des} - R_{pco}$$

Comsol Multiphysics: Optimization module (opt)

- Goal: fitting the experimental concentration profiles by adapting the kinetic parameters
 - \triangleright Adsorption reaction rate constant (k_{ads})
 - \triangleright Desorption reaction rate constant (k_{des})
 - Photocatalytic reaction rate constant (k_{pco})
 - \triangleright Maximum surface coverage (Γ_s)
- How?: Sparse Nonlinear OPTimizer (SNOPT) algorithm
 - > To find the local minimum of a least-squares objective function

Comsol (lines) vs Experimental data (dots)

Adsorption phase:

Comsol (lines) vs Experimental data (dots)

Photocatalytic phase:

Comsol (lines) vs Experimental data (dots)

Validation experiment:

Conclusion

- CFD/multiphysics is a versatile tool
 - To model the transient, dynamic behaviour of acetaldehyde through the reactor
 - To estimate the adsorption/desorption and photocatalytic rate constants

Thank you for your attention!

