Simple Finite Element Model of the Topografiner

H. Cabrera, D.A. Zanin, L.G. De Pietro, A. Vindigni, U. Ramsperger, D. Pescia Laboratory for Solid State Physics, ETH Zurich, HPT C 2.2, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland, cifuente@phys.ethz.ch

Introduction (poster will be replace): A sharp tip approached perpendicular to a conducting surface at subnanometer distances and biased with a small voltage builds a junction across which electrons can be transferred from the tip apex to the nearest surface atom by direct quantum mechanical tunneling. Such a junction is used e.g. in Scanning Tunneling Microscopy (STM).

Results: To the leading order, the potential depends on d differently in the "near" ($d \ll a$) or "distant" ($d \gg a$) regime

$$\begin{cases} \Phi(z) \sim V \cdot \frac{z}{d} & \text{for } d \ll a, \\ \Phi(z) \sim V \cdot \left(\frac{a}{d}\right)^{\lambda} \cdot \frac{z}{a} & \text{for } d \gg a, \end{cases}$$

with the geometry-factor λ determined by the aperture angle of the tip θ_0 (see Fig. 2).

Figure 1. The experimental Setup: a nanoelectronic device

Figure 2. The electrostatic problem, tip modeled with a hyperboloid of revolution

Figure 3. COMSOL Multiphysics[®] simulation of the diodelike junction

0.6

0.7

0.8

0.9

l(31)=1510 Surface: Electric potential (V) Contour: Electric potential (

1000

-1000

-3000

-4000

-5000

-6000

-7000

×104 ▼-122.5

When the distance d between tip and collector is increased beyond some nanometers, the junction enters the electric field assisted regime, the one underlying the topografiner technology -an imaging technique widely used in micro- and nano-electronics. Recent experiments¹ in this regime suggest a scaling law which can be tested numerically by verifying the collapsing of a family of $\Phi(z, d)$ -curves, computed at different d, onto one single curve ($\Phi(z,d)$) being the electric potential).

Computational Methods: The tip, kept at ground potential, is placed in front of a conducting plane set at voltage +V (see Fig. 2). Denoting with Ω the region of space excluding the tip and the plane, the electrostatic problem is a well defined Dirichlet problem for the electric potential Φ :

Conclusions: In the range $d \gg 10$ nm, the experimental data follow a power law $\propto d^{\lambda}$, with $\lambda = 0.21 \pm 0.02$. For smaller values of d the dependence becomes almost linear, indicating that the junction behaves as a plane capacitor at short distances: Direct tunneling typically occurs in this geometry. The essential features observed experimentally are captured by introducing the potential Φ computed for "realistic" tips into standard equations for electric field assisted tunneling. This highlights the potential of COMSOL Multiphysics® simulation in the context of field-emitted electron microscopy.

$$abla^2 \Phi = 0 \quad \text{in } \Omega,$$

 $\Phi = 0 \quad \text{on the surface of the tip,}$
 $\Phi = +V \quad \text{on the plane,}$
 $\Phi|(x) \leq V \quad \forall \vec{r} = (x, y, z) \in \Omega.$

References:

- 1. H. Cabrera *et al.*, Phys. Rev. B 87, 115436 (2013)
- 2. D.A. Zanin *et al.*, Advances in Imaging and Electron Physics bf 170, 227 (2012)

Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge