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Abstract: This paper presents the results of an 

acoustic analysis of a home recording studio. 

Previous works using COMSOL to model room 

acoustics include the study of [1]. When 

designing a recording studio it is imperative to 

take the resonances into account.  For the home 

recording studio owner, the most relevant 

question is where should the speakers be put for 

best sound?  To illustrate theses effects this 

paper uses COMSOL Acoustics to compute the 

eigenmodes of a home recording studio. The 

analysis herein computes every eigenfrequencies 

lower than 150 Hz, together with their 

corresponding eigenmodes. The eigenmode 

shows the sound intensity pattern for its 

associated eigenfrequency. From the 

characteristics of the eigenmodes we can draw 

some conclusions as to where the speakers 

should be placed. For the purposes of this study, 

higher frequencies will be omitted, to focus our 

efforts on lower frequencies (50-150 Hz).  Lower 

frequencies are of interest because they are 

typically where the fundamental resonance exists 

for a given dimension of the room [2]. To this 

end, herein COMSOL is used to help locate the 

optimized position of speakers in the recording 

studio. 

 

Keywords: Acoustics, Audio, Room Modes, 

Studio, Sound Pressure 

 

1. Introduction 

 

In the field of acoustics, the study of room 

modes (eigenfrequencies) is of significance 

because they are the frequencies where the room 

will resonate, which can adversely affect a 

desired state.  It is challenging to obtain modes 

and their corresponding pressure plots of rooms 

with complex geometries, which exemplifies the 

usefulness of COMSOLS’s acoustic pressure 

module.   

The study presented in this paper will carry out 

the acoustic pressure analysis of a home 

recording studio.  This includes the evaluation of 

a room for its properties in its natural state 

(eigenfrequencies/natural frequencies), as well as 

how speakers driven at these frequencies 

influence the room. the speakers were also 

loaded at a 1000 Hz to demonstrate how the 

pressure waves at a higher frequency are shorter 

and denser.  

 

 

2. Objective 

 

The principle of this study is to calculate the 

Eigenfrequencies of a room, and to evaluate their 

corresponding pressure plots.  The 

Eigenfrequencies of a room are important to 

study because they can force a room into 

resonance, which can be potentially destructive 

to a desired sound as well as to structures.  

Because sound waves are measured as pressure 

waves, obtaining pressure plots from COMSOL 

is highly valuable. For the purposes of this study, 

higher frequencies will be omitted, to focus our 

efforts on lower frequencies (50-150 Hz).  Lower 

frequencies are of interest because they are 

typically where the fundamental resonance exists 

for a given dimension of the room.  Figure 7, 

which is the isosurface pressure plot 

corresponding to an Eigenfrequency of 75 Hz, 

depicts how the pressure waves blanket the entire 

room, where as Figure 8 (1000Hz) depicts how 

tightly and clustered the individual waves are.   

 

3. Assumptions and Approach 
 

 In order to set up the model, the negative 

space of the following room was modeled as a 

solid with the properties of air as the working 

fluid.  The spatial model was constructed in 

SolidWorks, exported as a parasolid, and 

imported into COMSOL under geometry. 
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Figure 1- Model of Room 

 

 The figure below depicts the tetrahedral 

mesh, consisting of 31,289 elements, associated 

with the geometry of the modeled room.  The 

only boundary condition implemented in this 

study was a sound hard boundary.   

 

The air in the room was taken to be a lossless 

medium, wherein the time-harmonic acoustic 

field is governed by the following Helmholtz 

equation [2,3]: 
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where  is the density, p the time-harmonic 

acoustic pressure, k is the wavenumber, f is the 

frequency, and c is the speed of sound. The 

surfaces comprising the room walls were 

modeled as  sound-hard boundaries with a 

normal acceleration equal to zero at the wall, 

such that 
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This boundary condition essentially turns the 

perimeter of the model into walls which do not 

exchange information with the model, effectively 

turning off damping.  Furthermore, since the 

fluid that was modeled was air, a density of 

=1.25 kg/m
3
 and a speed of sound of c=343 m/s 

were used accordingly.   

 

 

 

 

 

Figure 2 – Tetrahedral Mesh 

 

4. Results 

 

 To begin this study, the natural frequency of 

the room is desired to know what to drive the 

speakers at. To obtain the lower frequencies, 

which are critical to driving the room to 

resonance, the following study was directed to 

solve for twelve Eigen frequencies around 90 

Hz. 

 

 Figure 3 was obtained after successfully 

running the solver, which reports the pressure 

plot of the Eigenfrequency at 75.459997 Hz.  

Since sound waves are modeled as pressure 

waves, this plot depicts the effects of acoustic 

pressure throughout the room.  Pressure is also 

related to sound pressure level (loudness), which 

is critical to achieve an even and uniform sound 

in a given room.  As expected areas of high 

pressure are located in corners due to the sharp 

geometry, and areas of low pressure occur in the 

open areas of the room. 

 

 
 

Figure 3 – Pressure Plot at 75 Hz 
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 The results were further processed to render 

the isosurfaces of the various pressures in the 

room.  This plot provides a clear visual of how 

the pressure waves are layered in the room at a 

given frequency in three dimensions. This is an 

extremely useful feature of COMSOL, due to the 

fact that isosurfaces are extremely challenging to 

obtain otherwise. 

 

 
 

Figure 4 – Isosurfaces at 75 Hz 

 

With the desired eigenfrequency, speakers, 

modeled as point loads, were simulated as shown 

in Figure 5.  A COMSOL Flow Point Boundary 

condition was used to simulate the effects of a 

speaker driving a given load. 

 

 
 

Figure 5 - Point Loads in the Room 

 

 The following pressure field on the walls was 

presented after the simulation was executed at 75 

Hz.  As expected, this pressure field is extremely 

similar to those obtained from the modal 

analysis.  

 

 
 

Figure 6 - Pressure Plot from Speakers Driven at 

75 Hz 

 

 Figure 7, shows the isosurfaces of the 

pressure waves from the driven speakers.  As 

stated previously, though the values are not 

exactly the same to those from the modal 

analysis, they are extremely close.   

 

 
 

Figure 7 - Isosurfaces at 75 Hz from Speakers 

 

 To further this study, the speakers were also 

loaded at a 1000 Hz to demonstrate how the 

pressure waves at a higher frequency are shorter 

and denser.  

 

 
 

Figure 8 - Isosurfaces at 1000 Hz 

 

 Visually comparing the isosurfaces of the 

modal results (Figure 4) and the results gathered 
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from driving two speakers (Figure 7) at same 

frequency it is clear that they are relatively close.  

This is expected, due to the fact that the speakers 

were loaded with the Eigenfrequency obtained 

from the modal analysis.  Ultimately this verifies 

the fact that if the speakers are driven at the 

Eigenfrequencies, the possibility of resonance is 

extremely likely. 

 

5. Verification and Validation 

 
5.1 Hand Calculation 

 

 To validate the COMSOL simulation, hand 

calculated results of a one meter cube are 

compared to results from COMSOL.  A one 

meter cube was chosen for this analysis to verify 

COMSOL results with published values.  The 

following Eigenfrequency equation for a 

rectangular room was used to calculate the 

theoretical values. 
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Where c is the speed of sound (c=343 m/s), and 

n is the order of the room mode in the specified 

direction. 

 

Calculating the first Eigenfrequency of the room 

in the x direction (1,0,0): 
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Constructing a one meter cube in COMSOL and 

solving for the Eigenfrequencies, the following 

values were obtained: 

 
Table 1: Fonts used in this manuscript 

 

Eigen- 

Freq. 

Degrees of Freedom 

1168 7204 22976 

1 - (1,0,0) 171.157 171.501 171.500 

2 - (0,1,0) 171.518 171.501 171.500 

3 - (0,0,1) 171.519 171.501 171.500 

4  - (1,1,0) 242.627 242.545 242.539 

5 - (1,0,1) 242.635 242.545 242.539 

6 - (0,1,1) 242.643 242.545 242.539 

 

The following surface pressure distribution was 

also obtained. 

 

 
 

Figure 9 - Pressure Plot of a 1m Cube (171.5 Hz) 

 

 With the theoretical and finite element 

solutions, a percentage error was calculated 

between the two, which afforded a percent error 

on the order of 0.0001%. Thus, it is clear from 

the above information that the values simulated 

in COMSOL are extremely close to the 

theoretical values, which makes this a fairly 

accurate model.  This truth has been extended to 

the room model simulated, which has a more 

complex geometry. 

 

5.2 Mesh Independent Study 

 

 After increasing to the degrees of freedom 

multiple times to achieve higher fidelity and 

convergence, the following table and graph were 

assembled. 

 
 

 

Table 2: Convergence of Modal Frequencies 

 

Eigen-

Freq. 

# of Elements 

1472 11252 112115 188409 

Freq. 1 75.625 75.366 75.305 75.299 

Freq. 2 76.972 76.757 76.718 76.714 

Freq. 3 79.596 79.289 79.231 79.222 

Freq. 4 81.087 80.647 80.548 80.534 

Freq. 5 85.027 84.566 84.449 84.438 

Freq. 6 89.539 89.209 89.143 89.137 

Freq. 7 96.180 95.698 95.615 95.605 

Freq. 8 98.972 98.374 98.176 98.157 

Freq. 9 99.627 99.120 99.039 99.030 

Freq. 10 102.086 101.464 101.376 101.361 

Freq. 11 103.686 102.709 102.522 102.502 

Freq. 12 106.453 105.726 105.523 105.505 
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Graph 1 – Convergence of the 12
th

 

Eigenfrequency (~105 Hz) 

 

 The above graph shows that as the number of 

elements increased, the value of the 12
th

 

Eigenfrequency leveled off around ~105.5 Hz. 

The graph only consists of the 12
th

 mode, 

because the values at this frequency tapered 

down the most to get a decent plot of 

convergence.  Furthermore, it can be inferred 

from the above graph that even coarse meshes, 

consisting of 1500 elements, converged within a 

single value of the finer mesh, consisting of 

200,000 elements, which renders the accuracy of 

the study.  Nevertheless, the graph shows that as 

the degrees of freedom increase so did the 

accuracy of the simulation. 

 

 

7. Conclusions 
 

 The acoustics module in COMSOL is an 

immensely powerful tool for individuals in the 

acoustics field.  Specifically, for those involved 

in sound production, the pressure acoustics 

module is an immensely useful tool, as it enables 

the user to acquire pressure plots given complex 

geometrical layouts, which would be 

cumbersome to compute/model otherwise.  

This study presented in this paper utilized the 

acoustics pressure module to determine the 

natural frequencies of a home recording studio.  

After obtaining the first natural frequency, 

speakers in the room were driven at the first 

eigenfrequency to compare the pressure plots 

respectively.  After visually inspecting the 

isosurface plots form the two simulations, it is 

clear that plots are almost identical. 
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