The friction coefficient of fractal aggregates in the continuum and transition regimes Anastasios Melas^{1,2} Athanasios Konstandopoulos^{1,3} Lorenzo Isella⁴ Yannis Drossinos² - ¹Dept. of Chemical Engineering, Aristotle University of Thessaloniki, Greece - ² European Commission, Joint Research Centre, Italy - ³Aerosol and Particle Technology Laboratory, CERTH/CPERI, Greece - ⁴European Commission, DG Energy, Luxembourg #### **Objectives** - To introduce a methodology for the calculation of the friction coefficient of fractal aggregates by solving a diffusion equation. - Advantages: - Numerical solution of a simpler equation (Laplace vs Stokes) - ii. Easy to implement computationally - Relate geometric and dynamic properties of fractal aggregates #### Fractal aggregates (I) Aerosols and colloids form fractal-like structures 512 monomers, D_f =1.5 and k_f =1.3, R_q =53.7 512 monomers, D_f =2.1 and k_f =1.3, R_g =17.2 512 monomers, D_f =1.8 and k_f =1.3, R_g =27.6 #### Fractal aggregates (II) Scaling law $$N = k_f (\frac{R_g}{R_1})^{d_f}$$ N: number of monomers k_f: fractal prefactor R_g: radius of gyration R₁: monomer radius d_f: fractal dimension Cluster-cluster aggregation algorithm - i. Satisfy exactly the scaling law - ii. Prescribed fractal dimension (d_f) and fractal prefactor (k_f) - iii. No monomer overlapping - Insert the structures from Matlab in Comsol Multiphysics with the tool Livelink ## Friction coefficient of fractal aggregates in the continuum regime (I) - Knudsen number is 0 (Kn=λ/R₁) - Stokes friction coefficient (continuum regime): $$f_N = \frac{1}{B_N} = 6\pi\mu R_h$$ B_N: Mechanical mobility R_h: Hydrodynamic radius Experimentally observed (Keller et al., 2000): $$K_N$$ - B_N =constant Independent of particle material, shape and size K_N : Collision rate between gas molecules and an aggregate. We assume that sticking coefficient is 1 From Stokes friction coefficient (Isella and Drossinos, 2011): $$\frac{K_N}{K_1} = \frac{f_N}{f_1} = \frac{R_h}{R_1}$$ (R_m=R_h in the continuum regime) ## Friction coefficient of fractal aggregates in the continuum regime (II) Collision rate between gas molecules and an aggregate: $$K_N = \int_{\mathcal{S}} \boldsymbol{J} \cdot \hat{\boldsymbol{s}} \, d\mathbf{S}$$ J: Diffusive flux of the gas towards the aggregate s: unit vector perpendicular to S dS: surface element Diffusive flux: $$J = -D_g \nabla \rho$$ D_a: gas self-diffusion coefficient ρ: gas density Dirichlet boundary conditions: - i. On the aggregate surface: $\varrho = 0$ - ii. Far away from the aggregate (on an outer sphere): $\varrho = 1$ #### **Use of Comsol Multiphysics** $$N = 32 - d_f = 1.8 - k_f = 1.3$$ $$N = 32 - d_f = 2.1 - k_f = 1.3$$ - Transport of diluted species or PDE with 2 Dirichlet boundary conditions. - Free tetrahedral mesh: Extra fine - Surface integration: Diffusive flux - Surface integration either on the whole fractal or on each monomer #### Simulations and results for simpler structures #### **Straight chains** | Straight
chains | Dahneke
(1982),
experimental fit | Collision
rate | |--------------------|--|-------------------| | 4-monomers | 0.507 | 0.507 | | 8-monomers | 0.390 | 0.389 | ### More complex structures: cube and rectangle solved analytically by Filippov (2000) | Structures
(8-
monomers) | Filippov(2000),
analytical
calculation | Collision
rate | |--------------------------------|--|-------------------| | Cube (2*2*2) | 0.293 | 0.290 | | Rectangle (2*4*1) | 0.361 | 0.366 | #### Slip flow regime - Small Knudsen numbers ($0 < Kn \le 0.2$) - In the transition regime $$f_N(Kn) = \frac{f_N(0)}{C(N, Kn)}$$ where C(N, Kn) is the Cunningham correction factor $$C(1, Kn) = 1 + AKn \text{ and } A = 1.234 + 0.414 \exp\left(-\frac{0.876}{Kn}\right)$$ (Millikan, 1923) We relate the collision rate to the friction coefficient $$C(N,Kn) = \frac{f_N(\mathbf{0})}{f_N(Kn)} = \frac{K_N(\mathbf{0})}{K_N(Kn)}$$ #### **Boundary conditions and the Comsol Multiphysics use** Robin boundary condition (Radiation boundary condition) $$\rho(R_1) = \alpha(Kn) \left. \frac{d\rho}{dr} \right| R_1 \qquad \text{On the aggregate surface}$$ $$\rho = 1 \qquad \qquad \text{Far away from the aggregate surface}$$ We solve a PDE with flux/source and dirichlet boundary conditions. • The $\alpha(Kn)$ is calculated for a monomer $$\rho(r) = \rho_{\infty} \left[1 - \frac{1}{1 + \frac{\alpha}{R_{1}}} \frac{R_{1}}{r} \right] \Rightarrow K_{1}(Kn) = \frac{K_{1}(0)}{1 + \frac{\alpha}{R_{1}}}$$ $$\Rightarrow \frac{\alpha}{R_{1}} = \frac{K_{1}(0)}{K_{1}(Kn)} - \mathbf{1} = \frac{f_{1}(0)}{f_{1}(Kn)} - \mathbf{1} = \mathbf{C}(\mathbf{1}, \mathbf{K}\mathbf{n}) - \mathbf{1}$$ • Boundary absorption/impedance term: $q = 1/\alpha$ #### **Straight chains** - Comparison with Dahneke's (1982) results for the Cunningham factor of straight chains in different Knudsen numbers - Maximum deviation 1.3% #### **Conclusions** - A methodology was introduced and validated for the calculation of the friction coefficient of fractal aggregates in the continuum and the slip flow regimes by solving a diffusion equation. - There is a very good agreement with literature values for straight chains and more complex structures with maximum Kn=0.5. - Comsol Multiphysics was used to solve the diffusion equation with complex boundary conditions on fractal-like surfaces. - Comsol Multiphysics can be used for the integrations either on the whole surface of fractal aggregates or for individual monomers of a fractal.