The friction coefficient of fractal aggregates in the continuum and transition regimes

Anastasios Melas^{1,2}
Athanasios Konstandopoulos^{1,3}
Lorenzo Isella⁴
Yannis Drossinos²

- ¹Dept. of Chemical Engineering, Aristotle University of Thessaloniki, Greece
- ² European Commission, Joint Research Centre, Italy
- ³Aerosol and Particle Technology Laboratory, CERTH/CPERI, Greece
- ⁴European Commission, DG Energy, Luxembourg

Objectives

- To introduce a methodology for the calculation of the friction coefficient of fractal aggregates by solving a diffusion equation.
- Advantages:
 - Numerical solution of a simpler equation (Laplace vs Stokes)
 - ii. Easy to implement computationally
- Relate geometric and dynamic properties of fractal aggregates

Fractal aggregates (I)

Aerosols and colloids form fractal-like structures

512 monomers, D_f =1.5 and k_f =1.3, R_q =53.7

512 monomers, D_f =2.1 and k_f =1.3, R_g =17.2

512 monomers, D_f =1.8 and k_f =1.3, R_g =27.6

Fractal aggregates (II)

Scaling law

$$N = k_f (\frac{R_g}{R_1})^{d_f}$$

N: number of monomers

k_f: fractal prefactor

R_g: radius of gyration

R₁: monomer radius

d_f: fractal dimension

Cluster-cluster aggregation algorithm

- i. Satisfy exactly the scaling law
- ii. Prescribed fractal dimension (d_f) and fractal prefactor (k_f)
- iii. No monomer overlapping
- Insert the structures from Matlab in Comsol Multiphysics with the tool Livelink

Friction coefficient of fractal aggregates in the continuum regime (I)

- Knudsen number is 0 (Kn=λ/R₁)
- Stokes friction coefficient (continuum regime):

$$f_N = \frac{1}{B_N} = 6\pi\mu R_h$$
 B_N: Mechanical mobility R_h: Hydrodynamic radius

Experimentally observed (Keller et al., 2000):

$$K_N$$
- B_N =constant Independent of particle material, shape and size

 K_N : Collision rate between gas molecules and an aggregate. We assume that sticking coefficient is 1

From Stokes friction coefficient (Isella and Drossinos, 2011):

$$\frac{K_N}{K_1} = \frac{f_N}{f_1} = \frac{R_h}{R_1}$$
 (R_m=R_h in the continuum regime)

Friction coefficient of fractal aggregates in the continuum regime (II)

Collision rate between gas molecules and an aggregate:

$$K_N = \int_{\mathcal{S}} \boldsymbol{J} \cdot \hat{\boldsymbol{s}} \, d\mathbf{S}$$

J: Diffusive flux of the gas towards the aggregate

s: unit vector perpendicular to S

dS: surface element

Diffusive flux:

$$J = -D_g \nabla \rho$$

D_a: gas self-diffusion coefficient

ρ: gas density

Dirichlet boundary conditions:

- i. On the aggregate surface: $\varrho = 0$
- ii. Far away from the aggregate (on an outer sphere): $\varrho = 1$

Use of Comsol Multiphysics

$$N = 32 - d_f = 1.8 - k_f = 1.3$$

$$N = 32 - d_f = 2.1 - k_f = 1.3$$

- Transport of diluted species or PDE with 2 Dirichlet boundary conditions.
- Free tetrahedral mesh: Extra fine
- Surface integration: Diffusive flux
- Surface integration either on the whole fractal or on each monomer

Simulations and results for simpler structures

Straight chains

Straight chains	Dahneke (1982), experimental fit	Collision rate
4-monomers	0.507	0.507
8-monomers	0.390	0.389

More complex structures: cube and rectangle solved analytically by Filippov (2000)

Structures (8- monomers)	Filippov(2000), analytical calculation	Collision rate
Cube (2*2*2)	0.293	0.290
Rectangle (2*4*1)	0.361	0.366

Slip flow regime

- Small Knudsen numbers ($0 < Kn \le 0.2$)
- In the transition regime

$$f_N(Kn) = \frac{f_N(0)}{C(N, Kn)}$$

where C(N, Kn) is the Cunningham correction factor

$$C(1, Kn) = 1 + AKn \text{ and } A = 1.234 + 0.414 \exp\left(-\frac{0.876}{Kn}\right)$$
 (Millikan, 1923)

We relate the collision rate to the friction coefficient

$$C(N,Kn) = \frac{f_N(\mathbf{0})}{f_N(Kn)} = \frac{K_N(\mathbf{0})}{K_N(Kn)}$$

Boundary conditions and the Comsol Multiphysics use

Robin boundary condition (Radiation boundary condition)

$$\rho(R_1) = \alpha(Kn) \left. \frac{d\rho}{dr} \right| R_1 \qquad \text{On the aggregate surface}$$

$$\rho = 1 \qquad \qquad \text{Far away from the aggregate surface}$$

We solve a PDE with flux/source and dirichlet boundary conditions.

• The $\alpha(Kn)$ is calculated for a monomer

$$\rho(r) = \rho_{\infty} \left[1 - \frac{1}{1 + \frac{\alpha}{R_{1}}} \frac{R_{1}}{r} \right] \Rightarrow K_{1}(Kn) = \frac{K_{1}(0)}{1 + \frac{\alpha}{R_{1}}}$$

$$\Rightarrow \frac{\alpha}{R_{1}} = \frac{K_{1}(0)}{K_{1}(Kn)} - \mathbf{1} = \frac{f_{1}(0)}{f_{1}(Kn)} - \mathbf{1} = \mathbf{C}(\mathbf{1}, \mathbf{K}\mathbf{n}) - \mathbf{1}$$

• Boundary absorption/impedance term: $q = 1/\alpha$

Straight chains

- Comparison with Dahneke's (1982) results for the Cunningham factor of straight chains in different Knudsen numbers
- Maximum deviation 1.3%

Conclusions

- A methodology was introduced and validated for the calculation of the friction coefficient of fractal aggregates in the continuum and the slip flow regimes by solving a diffusion equation.
- There is a very good agreement with literature values for straight chains and more complex structures with maximum Kn=0.5.
- Comsol Multiphysics was used to solve the diffusion equation with complex boundary conditions on fractal-like surfaces.
- Comsol Multiphysics can be used for the integrations either on the whole surface of fractal aggregates or for individual monomers of a fractal.

