

Computational Modelling and Simulation of the Human Duodenum

Bostjan Hari, Serafim Bakalis, Peter Fryer School of Chemical Engineering University of Birmingham Edgbaston Birmingham B15 2TT United Kingdom

Bostjan Hari (b.hari@bham.ac.uk)

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Human Duodenum Model

The human duodenum model is approximately 260 mm long and 35 mm wide elastic tube with porous wall of thickness 1.5 mm that can mimic peristaltic movements.

The model assumes:

Neglected pancreatic ducts and segmentation movements First order hydrolysis reaction of starch producing glucose Material of the duodenum-like elastic and porous tube is silicone Fluid flow is Newtonian fluid Density of the fluid flow is 970 kg/m³ Viscosity of the fluid flow is 0.1 Pa·s Young's modulus of the tube is 1.0·10⁷ Pa Poisson's ratio of the tube is 0.48 Density of the tube is 1140 kg/m³ Load (force) is 1.5·10⁵ N/mm²

Geometry and Computational Mesh

Boundary Conditions

Modelling and Simulation Strategy

The human duodenum model is modeled with COMSOL Multiphysics 4.2a. It consists of five different interfaces:

- 1. Free and Porous Media Flow Interface Simulates laminar flow inside the human duodenum-like elastic and porous tube and through the porous wall of the same tube
- 2. Solid Mechanics Interface
 - Simulates peristaltic movements of the human duodenum-like tube
- 3. Moving Mesh Interface Couples Free and Porous Media interface and Solid Mechanics interface into an integrated fluid-structure interaction part
- 4. Particle Tracing for Fluid Flow Interface Visualises mixing of flow particles inside the human duodenum-like tube
- 5. Transport of Diluted Species Interface Simulates the first order hydrolysis reaction of starch producing glucose inside the human duodenum-like tube and diffusive flux of glucose through the porous wall of the same tube

Modelling and Simulation Strategy

Peristaltic Movements

Fluid Flow Boundary Conditions

Fluid Flow Modelling Results

Velocity field in the axial direction [m/s] represented as surface plots and spatial direction of velocity fields represented as vector plots

Particle Tracing Boundary Conditions

Particle Tracing Modelling Results

Particle trajectories of the fluid flow represented as surface plots

Concentration Boundary Conditions

Concentration Modelling Results

Concentration field of glucose [mol/m³] represented as surface plots and spatial inward diffusive flux of glucose through the porous silicone wall represented as vector plots

Acknowledgments

The authors gratefully acknowledge support of the Biotechnology and Biological Sciences Research Council (BBSRC) from the United Kingdom for funding the project with the reference BB/I006079/1 and COMSOL AB from Sweden for technical support with COMSOL Multiphysics 4.2a software.

www.comsol.com