

Modeling a Non-Flooding Hybrid Polymer Electrolyte Fuel Cell and Related Diffusion-Migration-Reaction Systems

4 October 2012

Benjamin E. McNealy, Joshua L. Hertz

Center for Fuel Cell Research Department of Mechanical Engineering University of Delaware Email: bmcnealy@udel.edu

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Introduction

1D, time-dependent model in COMSOL 4.2a

- Governing equations
 - Transport of diluted species (Nernst-Planck)
 - Electrostatics (Poisson)
- Boundary conditions
 - Inward H⁺ flux at x = 0
 - Inward OH^{-} flux at x = L
 - Zero flux of other species (H⁺, OH⁻, e⁻, hole⁺)
 - Electrical ground at x = 0, zero charge at x = L

- Initial conditions
 - Ion concentrations based on neutral pH
 - Electron/hole concentrations from the literature (graphite)¹
 - Zero voltage

Goals

- Comparison with experimental results^{1,2}
 - Resistance vs. current
 - Insulating porous layer
- Temperature and thickness effects
- Examine other applications

¹ W. Shen, F.-Y. Zhang, A. K. Prasad, and J. L. Hertz, *Electrochem. Soc. Trans.*, **33**, 2011 (2010). ² W. Shen, A. K. Prasad, and J. L. Hertz, *Electrochem. Solid-State Lett.*, **14**, B121 (2011).

Ion concentration and conductivity

Ion concentration profiles

Conductivity

I = 100 mA/cm² t = (1) 0 s, (2) 0.025 s, (3) 0.05 s, (4) 0.1 s, (5) 0.2 s, (6) 2 s (steady state)

Electron/hole effects

I = 100 mA/cm² t = (1) 0 s, (2) 0.025 s, (3) 0.05 s, (4) 0.1 s, (5) 0.2 s, (6) 2 s (steady state)

Resistance

¹ T. S. Light, S. Licht, A. C. Bevilacqua, and K. R. Morash, *Electrochem. Solid-State Lett.*, **8**, E16 (2005).

Thickness effects

Temperature effects

Related systems

- Model can be extended to more complex cases, e.g. interdiffusion of AgNO₃/NaCl solutions
- Buildup of AgCl precipitate at the reaction front impedes diffusion
- Potential applicability to corrosion or biomineralization phenomena

Concentration profiles for Ag⁺ (solid line) and Cl⁻ ions (dashed line) at t = (1) 0 s, (2) 0.6 s, (3) 5 s, (4) 125 s, (5) 127 s, (6) 140 s.¹

Conclusions

- 1D porous layer model developed in COMSOL Multiphysics
- Unified treatment of heterogeneous electrochemical species in a Poisson-Nernst-Planck framework
- Good match with experimental results
 - Porous layer behaves as non-Ohmic electrolyte
 - Successful operation requires electron/hole conduction in porous layer scaffold
 - Porous layer dominates overall hybrid fuel cell resistance
- Resistance generally increases with thickness and temperature
- Model can be extended to have wider applicability