

that predicts, optimizes and innovates

Numerical Optimization of Electroactive Actuator Position for Optical Mirror Applications

Comsol European Conference: Munich, 25-27 October 2023

K. THETPRAPHI^{1,3}, V. BRUYERE², D. AUDIGIER¹, J.F. CAPSAL¹, P. NAMY², G. MORETTO³

- ¹: Univ. Lyon, INSA-Lyon, LGEF, EA682, F-69621, Villeurbanne, France
- ² : SIMTEC, 5 rue Felix Poulat 38000 Grenoble France
- ³ : Centre de Recherche Astrophysique de Lyon (CRAL), 9 avenue Charles André, 69230 Saint-Genis-Laval, France

Project #ANR-18-CE42-0007-01 (Live-Mirror project)

that predicts, optimizes and innovates

Numerical Optimization of Electroactive Actuator Position for Optical Mirror Applications

Outline

- I. Background Objectives
- II. Modelling and Numerical Model
 - a) Curvature Computation
 - b) Mechanical Problem
 - c) Optimization Procedure
- III. Main Results
- IV. Conclusions Perspectives

that predicts, optimizes and innovates

Before starting, who we are... www.simtecsolution.fr

SIMTEC : Fundamentals

- French Numerical modelling consultancy
- Leader in France of the COMSOL Certified Consultants, key partner worldwide
- 7 members Eng.D. + Ph.D.
- Main partners:
 - big international companies
 - laboratories
- Involved in the Research projects like EU FP (SHARK, SisAl)/ PhD supervision

ットックト

SisAl Pilot

that predicts, optimizes and innovates

I. Background – Objectives

EAP = Electro Active Polymer

that predicts, optimizes and innovates

I. Background – Objectives

ZYGO measurements

Mirror surface deformed by an active EAP actuator

that predicts, optimizes and innovates

I. Background – Objectives

Imported data in Comsol : $v_{exp}(x, z)$

Find an optimized EAP layout that minimize the local curvature $\rho = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial z^2}$

that predicts, optimizes and innovates

II. Modelling and Numerical Model

that predicts, optimizes and innovates

II. Modelling and Numerical Model

1st step: Curvature Computation – Mesh Validation

 $n_{element} = 25 \qquad n_{element} = 50 \qquad n_{element} = 100 \qquad n_{element} = 200$

Mesh convergence OK

that predicts, optimizes and innovates

II. Modelling and Numerical Model

1st step: Curvature Computation – Numerical Validation

$\lambda \Delta u + u = v_{exp}$

- Validation of both approaches
- Choice of the parameter of tunning $\lambda = 1e 11$

that predicts, optimizes and innovates

II. Modelling and Numerical Model

2nd step: Mechanical Problem – Equations & Boundary Conditions

• ElectroMechanical Model validated with experimental results

that predicts, optimizes and innovates

II. Modelling and Numerical Model

2nd step: Mechanical Problem – Equations & Boundary Conditions

Solid Mechanics

Mechanical problem solved

that predicts, optimizes and innovates

II. Modelling and Numerical Model

3rd step: Optimization Procedure

Property of SIMTEC - All rights reserved

that predicts, optimizes and innovates

III. Main Results

Optimization Procedure

that predicts, optimizes and innovates

III. Main Results

Optimized Results

On this example:

$$Gain = \frac{RMS(\rho_{initial})}{RMS(\rho_{optimized})} > 300\%$$

$$\bigcup$$
Validation of the numerical approach

that predicts, optimizes and innovates

III. Main Results

Application

- Import of experimental data & Pre-processing
- Local Curvature Computation and Post-processing

that predicts, optimizes and innovates

III. Main Results

Application

- Parametrization of the EAP Geometry Pattern
- Full Parametrized Optimization Procedure
- Export of resulting K_{f_i} for each EAP

IV. Conclusions - Perspectives

- Development of an optimization procedure to predict the optimum force (~ electrical potential) to be applied to each actuator,
- Parametrization of the optimization procedure to study the influence of the geometry pattern
- Validation of the curvature computation and optimization loop with a specified pattern of EAP

Property of SIMTEC - All rights reserved

that predicts, optimizes and innovates

To finish...

Q&A?

Our question: What about a coffee to discuss your topic? 😳

Project #ANR-18-CE42-0007-01 (Live-Mirror project)

COMSOL CONFERENCE 2023 MUNICH

Vincent BRUYERE SIMTEC (+33) (0)9 53 51 45 60 vincent.bruyere@simtecsolution.fr