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Abstract 
In metallurgy, the use of numerical models is popular because of the many coupled physical phenomena that occur 
during the various processes. For instance, the resulting shape and metallurgical state of a material are very 
sensitive to changes in temperature. The ingot cooling leads to thermal contraction: the thermal exchanges are 
drastically affected by the quality of contact between the metallic ingot and the crucible. To better understand these 
phenomena, a 2D axisymmetric model is developed using COMSOL Multiphysics® to simulate the casting and 
cooling of an ingot in a crucible. The casting process is carried out until the ingot has reached its final height, and 
then the ingot is cooled for several hours by water flowing over the crucible walls. By using a moving mesh method 
to describe the growth of the ingot, a thermo-mechanical model is built which includes the metallurgic phases 
evolution. After numerical validation, this model can be used to predict the influence of thermal contact resistances 
at the external walls of the ingot on the temperature and shape evolution of a material during casting. The 
metallurgical phase composition of the metal ingot is directly influenced by its thermal history over time and the 
properties of each potential phase change : this model can be used to describe the evolution of the different 
metallurgical phases during the cooling. 
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Introduction 
 
Numerical modelling is a very useful tool to increase 
the control of foundry processes and to predict the 
metallurgical and mechanical properties of molten 
metal ingots. In FRAMATOME, various melting 
processes are used. For example, the Creusot plant 
produce large forging and castings products in 
carbon steel or stainless steel which are required to 
manufacture the primary components of a nuclear 
power plant. At Ugine plant, the vacuum arc 
remelting process is used to produce Zirconium 
alloys ingots with a high level of quality in terms of 
chemical composition and solidification structures. 
Finally, the vacuum induction melting is used in 
several laboratories to produce and study alloys and 
melting processes.  
 
The objective of this work is to develop a model able 
to describe crucible filling through a simplified 
approach and to study in details ingot-crucible 
interactions to predict their influence on the resulting 
metallurgy. Different physical phenomena are of 
primary importance, such as the cooling mode and 
the contact conditions between the ingot and the 
crucible. 
 

Modeling and Governing Equations  
 
Each “physics” used in COMSOL Multiphysics® is 
detailed with the different assumptions used in this 
work. For confidentiality reasons, the geometry is 

simplified in this paper and arbitrary dimensions 
have been chosen. A 2D axisymmetric geometry is 
built, consisting of a mold or crucible (in grey in 
Figure 1) and an ingot (in red in Figure 1). Material 
properties are obtained from the literature for steel 
for the ingot [1], and copper for the crucible. The 
radius of the ingot, initially liquid and thus filling the 
volume, is considered equal to the radius of the 
crucible. The filling phase is simplified here, and the 
volume of the ingot will grow as a function of time, 
with a moving mesh method and a free surface, 
during the simulation. Depending on the type of 
casting process and the mass of the ingot, the filling 
can be slow (several hours) or fast (less than 1 
minute). The cooling mode can also vary greatly 
depending on the application. As a study case, 
different configurations will be simulated in this 
work. Fluid flow will not be taken into consideration 
here (for the filling and in the molten metal) but 
could be easily added in a future work thanks to 
COMSOL Multiphysics® flexibility.   

 
Figure 1. 2D axisymmetric geometry 
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Thermal Exchanges 

The transient heat equation is solved in the ingot and 
in the mold to obtain the temperature field at each 
point as a function of time: 

��� ���� + � ⋅ 
−���
 = 0 Eq. 1 

where � is the temperature, � the density, � the 
thermal conductivity and �� the heat capacity of the 
material. 
 
At the upper boundary of the ingot, the heat flux is 
prescribed to maintain the temperature close to the 
melting point. It represents the input energy from the 
casting. Concerning the ingot/crucible interfaces, 
“thermal contact” boundary conditions are used, 
resulting in a temperature discontinuity. They play a 
major role in the evolution of the temperature in the 
ingot and its resulting metallurgy. The boundary heat 
fluxes �� from the ingot (1) and from the crucible (2) 
are related to the temperatures of each boundary ��  
through the following relations: 
 −�� ⋅ �� = −ℎ�����
�� − ��
 −�� ⋅ �� = −ℎ�����
�� − ��
 

 

Eq. 2 

Eq. 3 

 

with a heat transfer coefficient ℎ�����  to calibrate. 
 
This coefficient is of prior importance because it 
directly governs the ingot cooling. Depending on the 
type of casting, it can be divided in different zones 
[2]: 

• The first zone is the direct contact between 
the liquid ingot and the crucible. This zone 
is very limited in size and very high value 
of conductance can be considered here:  ℎ����� = 10�  �� ⋅!  "# �� > �%�&'�(').  

• The second zone is a transitional zone, 
where the metal temperature is lower than 
the liquidus temperature, called the “mixed 
zone”. The contact is not perfect but is 
made through a succession of asperities and 
gas pockets. The value of the conductance 
in this zone is very difficult to estimate but 
still very important for the process 
modeling. A constant value of ℎ =800 �� ⋅! is used and this value will be 

studied in this work. 
• The third zone is defined by a total loss of 

contact due to heat shrinkage of the ingot. 
Heat transfer occurs exclusively by 
radiation, described with the following 
conductance, with +� the ingot emissivity 
and , the Stefan-Boltzmann constant: ℎ����� = +�,-��2 + ��2/
�� + ��
.  
 

Finally, concerning the crucible, exterior boundaries 
will be cooled by different mean. Heat transfer 
coefficient is obtained from the “Heat Transfer 

module” of COMSOL Multiphysics® for natural 
convection with air. If forced convection (water 
cooling) is modeled, heat transfer coefficient is 
obtained from the literature for lateral and bottom 
surfaces [3]. 
The latent heat of solidification is added through the 
“Phase Change Material” Interface for Fluid Domain 
in the “Heat Transfer” node. Although radiation 
between the ingot upper surface and ambient could 
be an important effect, it is not considered in this 
simplified model. It has been implemented in a more 
complete model, not presented here.  
 
Metallurgy 

As explained previously, the metallurgical phase 
composition of the metal ingot is directly influenced 
by its thermal history over time and the properties of 
each potential phase change. The example of low-
alloy steel is detailed in this part. A continuous 
cooling transformation diagram (CCT), illustrated in 
Figure 2, can be used to describe the evolution of the 
different metallurgical phases. Initially the 
metallurgical state is assumed to be only composed 
of austenite phase. 
 

 
Figure 2. CCT diagram from [4] 

Two types of evolution are classically distinguished 
in metallurgy and modeled in this work.  
First of all, transformation from austenite to ferrite 
and/or pearlite is unified into a singular phase 
transition. Given its diffusive behavior, this 
transformation is represented using the Leblond-
Devaux phase transformation model [3]. The 
temperature-dependent functions (0�
�
 and 1�
�
) 
that describe this phase transformation are obtained 
from [4]. The rate at which the fraction of the ferrite 
and pearlite phases (formed at the expense of the 
austenite phase) changes over time, is then given by: 

234 = 0�
�
25')�6���6 − 1�
�
2� Eq. 4 

with 2� the fraction of phase " (ferrite and pearlite) 
and 25')�6���6 the austenite fraction. 
 
For the bainite formation, the same diffusion 
mechanism process is modeled, but including a 
dependency on the temperature rate [3]. By using the 
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same functions presented in [4], the following 
equation is added: 2475����6 = 8
�
9
�4 
25')�6���6− :
�
9
�4 
275����6 

Eq. 5 

with 275����6  the bainite phase fraction. 
 
Second of all, in contrast to the diffusive phase 
transformations discussed earlier, the martensitic 
phase transformation is characterized by a displacive 
mechanism [5]. The amount of martensite formed is 
directly linked to the degree of undercooling below 
the martensite start temperature 
;)). This 
transformation is well approximated using the 
Koistinen-Marburger model, as referenced in [5]. 
The rate at which the transformation progresses, 
leading to the formation of the martensite, can be 
expressed as follows if �4 < 0  and � < ;): 

24�5=�6�)��6 = −25')�6���6>�4   Eq. 6 

with 2�5=�6�)��6  the martensite phase fraction and > 
a growth factor obtained from [4]. 
 
Solid and thermal material properties could vary 
with the proportion of each metallurgical phase, but 
it is not considered in this work. 
 
Solid Mechanics 

At high temperatures, the behavior of materials is 
highly non-linear and viscoplastic effects have to be 
taken into account to estimate stress and strain states. 
Firstly, the strain tensor (+) is classically shared in 

two parts: the elastic strain tensor (+6) and the plastic 

tensor (+�): 

+ = +6 + +� Eq. 7 

Secondly, constitutive relation between the stress 
tensor (,) and the strain tensors, is expressed as 

follows, taking into account the thermal expansion: 
 , = ?
�
: A+ − +� − B
�, 2�
 ⋅ 
� − �D
EF Eq. 8 

with ?
�
, the 4th-order elasticity tensor function of 

G
�
, the Young modulus and H
�
 the Poisson 
coefficient; B
�, 2�
, the coefficient of thermal 
expansion and �D a reference temperature. 
 
The “Lemaitre and Chaboche” model [1] is used here 
to describe viscoplastic flow and non-linear 
hardening. In this work, only the kinematic 
hardening is considered. A “back stress” tensor, I, is 

defined, linked to the plastic strain rate tensor +�4  and 

the effective strain rate J4 . The complete system of 
equations which describes this viscoplastic flow with 
non-linear kinematic hardening is expressed by:  

 

+�4 = J4 32 ,L − IL
M� A,L − ILF Eq. 9 

I4 = 23 �
�
+�4 − NI J4 Eq. 10 

J4 = OM� A, − IF − ,P
�
0
�
 Q
R
S


 Eq. 11 

with ,P
�
, the yield stress, �
�
 and N, two 
kinematic hardening coefficients and 0
�, 2�
 and T
�, 2�
, two coefficients of viscoplasticity. 
 
The notation UL represents the deviatoric part of a 

tensor U. The bracket notation ⟨U⟩ is the positive part 

of U and the M� notation is the second deviator 
invariant of the considered tensor. 
 
At last, the quasi-static equation of motion is solved 
for by using the “Solid Mechanics” physics: 

∇ ⋅ , = 0 Eq. 12 

Deformed Geometry 

In order to model the ingot growth, a deformed 
geometry is used. The velocity is analytically known 
in this approach and the resulting variation of height 
can be directly computed with the following relation: 

ΔZ = -[����� ⋅ � ⋅ #
�
 + ℎ�����
1 − #
�

/ ⋅ Zℎ�����  Eq. 13 

with [%�����  is the known velocity of the ingot 
surface (resulting of the casting velocity or the 
melting velocity of an electrode for example), #
�
 
is a step function equals to 1 during the casting and 
0 after and ℎ����� the initial height of the ingot. 
 

Model Validation / Numerical Aspects 
 
All the previous equations are solved together, with 
a segregated approach. Indeed, the couplings 
between all these phenomena are mostly in one 
direction and no specific convergence issues have 
been encountered. Concerning the spatial 
discretization, a mapped mesh is used, and 2nd order 
of Lagrange polynomials are used for the 
discretization of each variable. The maximum time 
step is controlled and limited in the BDF solver. 
 
In order to study the precision of our approach, mass 
and energy balances are good indicators to validate 
numerical parameters. As the geometry is 
analytically controlled, the mass balance is trivial. 
An energy balance is also performed and shown in 
Figure 3. It represents the evolution of both cooling 
powers (lateral in blue and bottom in green) and the 
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resulting enthalpy variation (in red). With cyan 
markers the opposite of the sum of these cooling 
powers is plotted, showing a very good correlation 
with enthalpy variation and highlighting the 
complete energy balance validity.  
 

 
Figure 3. Energy Balance 

This result numerically validates the model. It will 
now be used in different operating conditions to 
study the influence of cooling conditions and the 
importance of contact boundary conditions. 

Results 
 
Thermo-mechanical Results 

As discussed previously, a major advantage of this 
thermo-mechanical model is that it enables us to 
study the contact between the ingot and the crucible 
in greater detail. A study case is performed with a 
natural convection cooling and with an ingot growth 
time of half an hour. The resulting shape of the ingot 
is shown (with a deformation factor of 10 for thermal 
dilatations) at different instants in Figure 4. During 
the growth phase (� \ 1800]), the melting zone is 
delimited by the isotherm � = ��6%����, plotted in 
magenta contour. The heat shrinkage zone can be 
observed from the start of the ingot growth and 
increases with time (see Figure 4). When the growth 
is stopped (� = 1800]), the ingot cools down and the 
resulting shape of the ingot is obtained, depending 
directly on the dilatation coefficient. 
 

 
Figure 4. Radial displacement due to thermal dilatation 

at different instants (deformed view by a factor10) 

Residual stresses can also be estimated with this 
approach. A representation is given in Figure 5 
during the growth phase (� = 900]) and at the end 
of the cooling (� = 36000]
. Depending on the 
cooling kinetics, high values can be observed given 
valuable information for the life of the ingot. 
 

 
Figure 5. Von Mises stresses at different instants 

(deformed view by a factor10) 

 
Thermal Exchanges  

As explained previously, the value of the 
conductance at the ingot/crucible interface, ℎ�����  is 
not well known. It depends mainly on the local 
properties of the surfaces, the contact pressure, and 
the mechanical properties of the ingot boundary. 
This approach gives a first approach of the contact 
size by considering the mechanical behavior of the 
ingot during the growth. Three values are studied to 
quantify the influence of this parameter by plotting 
the temperature at the top boundary and at the center 
of the ingot (Figure 6). The higher the conductance, 
the greater the exchange with the crucible and the 
faster the cooling. Contact resistances relations, 
given by COMSOL Multiphysics® using Mikic’s 
assumptions [8] and functions of the local contact 
pressure, will be studied in a future work to provide 
a more predictive model. 

 

 
Figure 6. Temperature evolution at the top boundary and 

at ` = 0 in the ingot for three values of ℎ����� 

Another very important mechanism is obviously the 
mode of cooling of the crucible. Indeed, depending 
on the type of casting, the crucible can be designed 
as a good heat conductor to benefit from forced 
convection cooling, or as a thermal insulator to 
control the cooling with natural convection only. 
Two types of convection at the periphery of the 
crucible are studied here by plotting the temperature 
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evolution at the top boundary and at the center of the 
ingot (Figure 7). 

 

 
Figure 7. Temperature evolution at the top boundary and 

at ` = 0 in the ingot for two types of cooling 

As expected, with forced convection by water flow, 
cooling kinetics are higher. This parametric study 
emphasizes the importance of a precise modeling of 
this effect. Thanks to temperature evolution 
prediction, the resulting metallurgy of the ingot can 
now be studied into more details. 
 
 
Metallurgical Results 

As explained previously the metallurgical state 
highly depends on the temperature and the cooling 
rate. An illustration of the ability of the model to 
predict the formation of each metallic phase is shown 
by plotting the four phases generated from austenite 
initial phase, at 
� = 4ℎ
 in Figure 8, and after 
cooling (� = 10ℎ
 in Figure 9. At � = 4ℎ, formation 
of pearlite and ferrite begins from the top of the ingot 
and follows temperature gradients. At the end of the 
cooling, each phase is mostly spatially constant 
(adapted scales have been used to illustrate local 
variations in Figure 9). 
 

 
Figure 8. Metallurgic phases after 4 hours under slow 

cooling conditions 

 

 
Figure 9. Metallurgic phases at the end of the cooling 

phase under slow cooling conditions 

Both same previous cooling conditions are simulated 
(natural and forced convection mode), and 
metallurgical results are shown in terms of phase 
fraction at the top boundary and at the center of the 
ingot. As expected, for slow cooling Figure 10, the 
predominant phase to form after cooling is pearlite. 
Slow cooling allows the atoms in the steel to diffuse 
slowly and form lamellar structures of ferrite and 
cementite, which together make up pearlite. On the 
other hand, for a faster cooling (see results in Figure 
11) bainite forms as well as a small fraction of 
martensite. Because it is a phase transformation 
without diffusion, martensite forms at higher cooling 
kinetics and a higher fraction could be achieved by 
increasing kinetics. In this case, the high 
concentration of bainite (Figure 11) indicates that the 
cooling is an intermediate cooling rate. 
 

 
Figure 10. Metallurgic phases evolution for low cooling 

velocity 

 
Figure 11. Metallurgic phases evolution for high cooling 

velocity 
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Conclusions 
 
A thermo-metallo-mechanical model has been 
developed in this paper to study the influence of 
ingot cooling under different operating conditions. 
After a concise description of the main assumptions, 
the model has been detailed and then validated with 
an energy balance.  
Thermal, mechanical, and metallurgical results have 
been discussed to highlight the interest of such 
model and the importance of the control of cooling 
conditions. This first approach is very promising 
because it provides new information for predicting 
the contact zone dimensions. A first step towards the 
prediction of the conductance between the ingot and 
the crucible has been taken and the study will 
continue in a future work. This major aspect will be 
added to other numerical approaches adapted to 
specific foundry processes and experimental 
measurements would be developed to validate these 
results. 
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