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Abstract: We have developed a technique using 
COMSOL Multiphysics to calculate the effective 
coupling coefficient, , of higher order 
laterally-coupled gratings.  We apply this model 
to the case of a fourth-order grating and 
determine that there are local maxima in 

effκ

effκ  at 
duty cycles of 0.58 and 0.88, that there are 
periodic variations in  with grating height, 

and 
effκ

effκ  generally grows as the grating ridge 
width ratio WN/WW decreases. 
 
Keywords: modified coupled-mode analysis, 
distributed feedback lasers, higher order gratings. 
 
1. Introduction 
 

Distributed feedback lasers improve the 
performance of standard Fabry-Perot laser 
designs by including a wavelength-selective 
grating that provides superior output, spectral 
purity and temperature stability.  Laterally-
coupled distributed feedback (LC-DFB) lasers, 
such as our design shown in Figure 1, have a 
grating that has been patterned out of the 
waveguide ridge [1,2].  This allows for 
simplified fabrication and monolithic integration 
with a variety of other photonic devices.  The 
fabrication of LC-DFB lasers can be further 
simplified with the use of higher order gratings, 
i.e. using integer multiples of the first-order 
Bragg grating period.  As an example, our  
 

 
Figure 1.  Cutaway view of laterally-coupled 
distributed feedback laser. 
 

application, a 1310 nm laser, uses a fourth-order 
grating with a period of 800 nm, making it easier 
to fabricate using standard lithographic 
techniques compared to a first-order grating with 
a period of 200 nm.   

 
2. Modified Coupled-Mode Analysis 
 
2.1. Theory 
 

The modified coupled-mode equations, first 
derived by Streifer et al., are [3]: 
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where α  is the modal gain/loss, δ is the Bragg 
frequency detuning, pκ  is the coupling 
coefficient, A and B are the longitudinal mode 
field amplitudes, and 1,...,4ζ  are the Streifer 
correction terms. 
 The calculation of the modified coupled-
mode coefficients, pκ  and 1,...,4ζ , for fourth-
order gratings is the focus of this paper.  The 
first step is to find the quasi-TE mode solution of 
the Helmholtz wave equation: 
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where 0ε is the modal field, and β is the 
propagation constant.  The quasi-TE solution of 
Equation (2) is used to calculate pκ , where p=-
N, and N is the grating order: 
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where k0 is the free-space wavenumber, P is the 
power contained in the optical mode, G is the 
grating region, and A-4 is the Fourier coefficient 
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of the grating.  For the fourth-order rectangular 
gratings studied here, the Fourier coefficients are 
[4]: 
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The duty cycle is defined as /aγ = Λ  , where a 
is the wide ridge length, and  is the grating 
period, referring to Figure 1, and n

Λ
1,2 are the low 

and high refractive indices, respectively, along 
the length of the grating.  The larger index, n2, is 
the average index of the semiconductor grating 
region layers, and the smaller index, n1=1.445, is 
the index of the SiO2 dielectric.  The Fourier 
coefficients vanish outside of the periodic 
grating, resulting in the integration of Equation 
(3) being only over the grating region. 
 To calculate the 1,...,4ζ  terms, partial waves of 
order m, for both forward and backward waves 
(i=0,p), ( )i

mε , must be solved.  These partial 
waves can be obtained from solutions to the 
modified wave equation [5]: 
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where 0 2 /m mβ β π= + Λ  is the propagation 
constant of the partial wave of order m, and 0β  
is the propagation constant for the Bragg grating 
condition.  The 1,...,4ζ  terms are obtained from 
the partial wave solutions by 
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The total coupling of the higher order 

grating, including contributions from the 1,...,4ζ  
terms, can be expressed by an effective coupling 
coefficient, effκ [6]: 

 ( )( )*
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The real part of effκ will give the amount of 
index coupling, while the imaginary part 
expresses the amount of gain/loss coupling of the 
grating. 
 
 
2.2. Numerical Solution 
 

The numerical solution begins with the 
quasi-TE mode solution of Equation (2). The 
particular structure of used here has been 
previously described in [7].  The solution is 
found using the Perpendicular Hybrid-Mode 
Waves application mode of the COMSOL RF 
Module; this calculates the mode field and the 
effective index of the fundamental TE mode.  
The adaptive mesh feature is used to refine the 
initial mesh. The computational domain is 8 µm 
in height and 8 µm in width.  Perfect electric 
conductors are used at the boundaries; these are 
sufficiently removed from the guided mode field 
to have a negligible impact on the solution. 

  The solution of this problem results in a 
range of modes. To obtain the quasi-TE mode, 

0 ( , )x yε , an overlap of the electrical field in the 
x-direction, Ex, with a Gaussian waveform is 
performed. The quasi-TE mode is the one with 
the largest overlap. From this solution, the 
propagation constant is determined, and 
Equation (3) can be evaluated using the 
subdomain integration feature with only those 
subdomains that comprise the grating region. 

The modal field of 0 ( , )x yε  is then saved to a 
data file to be used in the solution of Equation 
(5).  The solution of Equation (5) is obtained 
using the Helmholtz wave equation module of 
COMSOL.  The source term uses the modal 
field, obtained from the data file.  The partial 
wave terms use a computational area 15 µm high 
and 14 µm wide.  Since this area is larger than 



the calculation window of the modal field, 
0 ( , )x yε  is assumed to be zero outside the 

original computational window size.  This has 
been numerically verified to have a negligible 
impact on the solutions, since the source term 
only appears in the grating regions, far from the 
computational window boundaries of both 
solutions.  The partial waves of lower orders are 
often radiative.  To generate the correct modal 
fields without resorting to an excessively large 
computational window, absorbing boundary 
layers were used.  In these layers, the real part of 
the refractive index was kept the same as the 
adjoining subdomain, while the imaginary part  

 
Figure 2. Detail of 1st order radiating partial wave 
of a laterally-coupled distributed feedback laser 
 
increased quadratically towards the outer 
boundary.  An example of an m=-1 radiating 
partial wave for a laterally-coupled grating is  
shown in Figure 2.  The field is largest in the 
grating regions on either side of the ridge, where 
the source terms are nonzero.  Outside these 
regions, resonances occur due to reflections from 
layers of different semiconductor materials or 
from the metal layers above the ridge.  The metal 
layers are sufficiently reflective to prevent any 
light from escaping above the ridge.   

The expressions for the 1,...,4ζ  terms include 
infinite summations that must be truncated for 
numerical evaluation.  The number of partial 
wave orders that must be calculated was 
examined by  Streifer, who found that partial 
wave orders from -8≤q≤5 was sufficient [4], 
while Zhong et al. used orders from -12≤q≤10 
[8].  For our results, it was found that the 
coupling coefficient values converged to within 
0.1% of a solution using partial wave orders 
from -25≤q≤25 when using only partial wave 
orders from -9≤q≤9. These are the partial wave 
orders that are used in the subsequent 

simulations.  This range of partial wave orders is 
used in all subsequent calculations.  The results 
of our method had agreed within 5% of the 
calculations by Zhong et al. [8]. 
 
3. Results  
 
3.1. Duty cycle 
 

The duty cycle, γ , of the grating is the ratio 
of the wide part of the ridge, a, to the total 
grating period, Λ , or /aγ = Λ .  In rectangular 
gratings, the duty cycle will determine the 
Fourier coefficient of the grating, and thus have a 
direct effect on the coupling coefficient.  While 
the Fourier coefficient is symmetrical around 
γ =0.5 for these gratings, is larger for higher 
duty cycles, as shown in Figure 3.  This is due to 
a higher average refractive index in the grating 
regions when the duty cycle is higher, resulting 
in a higher optical grating confinement and 
hence greater coupling. 

effκ

 There are four peaks in the effκ  vs. γ  
characteristic, the two largest are at γ =0.58 and 

0.88 where effκ = 29.8 and 85.0 cm-1, 
respectively.  The zero crossings of the phase 
characteristic are points where two degenerate 
longitudinal modes will both be supported, and 
should be avoided.  They occur at duty cycles of 
0.35 and 0.65.   
 
3.2. Grating Height 
 
We next examine the effective coupling 
coefficient for grating heights larger than 0.4 µm.  
At smaller grating heights, the optical mode will 

 
Figure 3.  Magnitude, effκ , and phase, ( )effφ κ , of  

the effective coupling coefficient vs. duty cycle for a 
fourth-order grating with WN/WW = 1.5/3 (µm). 



 
Figure 4. Effective coupling coefficient vs. 
grating height for a fourth-order grating with 
WN/WW = 1.5/3 (µm) and a duty cycle of 0.6. 
 
be close enough to the metal contacts above the 
ridge to significantly increase the optical loss.  
The real and imaginary parts of demonstrate 
damped oscillations as the height increases.  The 
phase of these damped oscillations does not 
coincide for the real and imaginary parts.  The 
real and imaginary part have a periodicity of 
~0.3 µm, with a variation of ~5 cm

effκ

-1 in effκ  and 

0.15 radians in ( )effφ κ . The 2ζ terms are 
responsible for the oscillatory behaviour of the 
effective coupling coefficient.   

At particular grating heights, the resonances 
that can be observed in Figure 2 become stronger 
or weaker, resulting in oscillations in the real and 
imaginary portions of , as shown in Figure 4.  
These periodic variations will be larger when the 
contribution of 

effκ

2ζ  to , compared to effκ pκ , is 

relatively larger.  The first peak in effκ  occurs 
at a grating height of 0.64 µm, this represents a 
stable point of fabrication for a strong laterally-
coupled grating.   
 
 
3.3. Grating Width 

 
The effect of ridge width on the coupling 

coefficient has previously been studied by Choi 
[2], who found that the coupling coefficient 
decreases as WN increases for a fixed WW.  We 
obtain a similar result for fourth-order gratings, 
shown in Figure 5(a).  In addition, we observe 
subtle resonances in the effκ  vs. WN,W 
characteristic, and significant resonances in the 
( )effφ κ  vs. WN,W characteristic.  The value of WN 

should be made as small as possible to maximize 

effκ .  This will be restricted by the minimum 
size required to place a metal contact on top of 
the ridge, typically around 1.5 µm.   

We fix the WN  value to be 1.5 µm in Figure 
5(b) and increase WW from 1.5 to 4 µm.  Similar 
resonances are observed as with the WN 
characteristic, but the changes in ( )effφ κ  tend to 

become more damped as effκ  saturates at ~30 
cm-1 at wide ridge widths of 2.75 µm and above.  
The value of effκ is more sensitive to WN than to 
WW since the value of the dimensions of the ridge 
nearest the waveguide mode will tend to 
dominate.  This is due to the fact that 

0 ( , )x yε will drop off exponentially in the grating 
region away from the waveguide ridge, 
weighting the integrations of Equations (3) and 
(7) towards the waveguide ridge.  From Figure 5, 
we can say that using WN/WW=1.5/3 (µm) will 
provide a stable, high-performance laterally-
coupled grating.   

The resonances observed in Figure 5 occur 
for the same reasons as in Figure 4, except now 
they are due to standing wave patterns in the  

 
(a) 

 
(b) 

Figure 5. Effective coupling coefficient for a 
fourth-order grating with a duty cycle of 0.6 vs. a) 
narrow ridge width, WN, for WW = 4 µm, and b) wide 
ridge width, WW, for WN = 1.5 µm. 



 
horizontal direction.  Since  changes more 
steeply vs. grating width than vs. grating height, 
the partial wave terms, along with their 
resonances, have less of an impact on 

4κ−

effκ .The 
result is the more subtle resonances observed in 
Figure 5 compared to Figure 4, where the partial 
wave terms predominate. 
 
4. Conclusions 
 

We have investigated the optical properties 
of fourth-order laterally-coupled gratings in 
terms of their effective coupling coefficient.  We 
find that effκ  vs. duty cycle characteristic has 
four maxima, the two largest occurring at duty 
cycles of 0.58 and 0.88.  There are periodic 
variations that occur in both the real and 
imaginary parts of vs. the grating height and 
grating widths, W

effκ

N and WW.  Due to the 
predominance of the 2ζ  terms in the effκ term, 

the periodic variations in effκ  are relatively 
larger vs. the grating height than vs. the grating 
widths.  In the grating ridge width characteristic, 
the predominance of the  will produce subtler 
resonance effects.  This analysis shows that 
fourth-order gratings with a duty cycle with a 
grating height of ~0.64 µm, W

4κ−

N = 1.5 µm, and 
WW > 3 µm will produce a high-performance 
laterally-coupled grating for DFB laser 
applications. 
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