The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

Search Term: lithium-ionx

Lithium-Ion Battery Impedance

The goal with this app is to explain experimental electrochemical impedance spectroscopy (EIS) measurements and to show how you can use a simulation app, along with measurements, to estimate the properties of lithium-ion batteries. The app takes measurements from an EIS experiment and ... Read More

2D Lithium-Ion Battery

The following example is a 2D tutorial model of a lithium-ion battery. The cell geometry is not based on a real application; it is only meant to demonstrate a 2D model setup. Read More

Heterogeneous Lithium-Ion Battery

This model describes the behavior of a lithium-ion battery unit cell modeled using an idealized three-dimensional geometry. The geometry mimics the structural details in the porous electrodes. Such models are referred to as heterogeneous models. The modeling approach for heterogeneous ... Read More

Liquid-Cooled Lithium-Ion Battery Pack

This model simulates a temperature profile in a number of cells and cooling fins in a liquid-cooled battery pack. The model solves in 3D and for an operational point during a load cycle. A full 1D electrochemical model for the lithium battery calculates the average heat source. Read More

Lithium-Ion Battery with Single-Ion Conducting Solid Electrolyte

This example demonstrates the Lithium-Ion Battery, Single-Ion Conductor interface for studying the discharge of a lithium-ion battery with solid electrolyte. The geometry is in one dimension and the model is isothermal. The behavior at various discharge currents and solid electrolyte ... Read More

Lithium-Ion Battery Rate Capability

A battery’s possible energy and power outputs are crucial to consider when deciding in which type of device it can be used. A cell with high rate capability is able to generate a considerable amount of power, that is, it suffers from little polarization (voltage loss) even at high ... Read More

Lithium-Ion Battery Internal Resistance

This tutorial digs deeper into the investigation of rate capability in a battery and shows how the Lithium-Ion Battery interface is an excellent modeling tool for doing this. The rate capability is studied in terms of polarization (voltage loss) or the internal resistance causing this ... Read More

1D Isothermal Lithium-Ion Battery

This model demonstrates the Lithium-Ion Battery interface for studying the discharge and charge of a lithium-ion battery for a given set of material properties. The geometry is in one dimension and the model is isothermal. Battery developers can use the model to investigate the influence ... Read More

Lithium-Ion Battery Base Model in 1D

This application example is useful for investigation of the following: Voltage, polarization (voltage drop), internal resistance, state-of-charge (SOC), and rate capability, in lithium-ion batteries under isothermal conditions. Some of the listed properties play an important role in ... Read More

1D Lithium-Ion Battery Model for the Capacity Fade Tutorial

Side reactions and degradation processes may lead to a number of undesirable effects, causing capacity loss in lithium-ion batteries. Typically, aging occurs due to multiple complex phenomena and reactions that occur simultaneously at different places in the battery, and the degradation ... Read More

First
Previous
1–10 of 41