# Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

### Species Transport in the Gas Diffusion Layers of a PEM

This example focuses on the species transport within the gas diffusion layers (GDLs) of a proton exchange membrane (PEM) fuel cell. The geometry models a cell with two adjacent flow channels of different pressures, a situation that may occur in a cell with serpentine flow channels, or in a cell using an interdigitated flow field design. The model uses current balances, mass transport equations ...

### Capacity Fade of a Li-ion Battery

This 1D model example demonstrates how to use the Events interface in conjunction with a battery cell model to simulate battery capacity loss during cycling. The battery is switched between constant voltage and constant current operation, both during charge and discharge. Cycleable lithium is lost in the negative electrode due to a parasitic lithium/solvent reduction reaction.

### 1D Isothermal Lithium-Ion Battery

This model demonstrates the Lithium-Ion Battery interface for studying the discharge and charge of a lithium-ion battery for a given set of material properties. The geometry is in one dimension and the model is isothermal. Battery developers can use the model to investigate the influence of various design parameters such as the choice of materials, dimensions, and the particle size distribution ...

### Thermal Modeling of a Cylindrical Li-ion Battery in 3D

This example simulates the heat profile in an air-cooled cylindrical battery in 3d. The battery is placed in a matrix in a battery pack. The thermal model is coupled to a 1d-battery model that is used to generate a heat source in the active battery material. The model requires the Batteries & Fuel Cells Module and the Heat Transfer Module

### Tutorial Model of a Lithium-Ion Battery

The following example is a 2D tutorial model of a lithium-ion battery. The cell geometry is not based on a real application; it is only meant to demonstrate a 2D model setup.

### Orange Battery

This tutorial example models the currents and the concentration of dissolved metal ions in a battery (corrosion cell) made from an orange and two metal nails. This type of battery is commonly used in chemistry lessons. Instead of an orange, lemons or potatoes can also be used.

### Thermal Modeling of a Cylindrical Li-ion Battery in 2D

This model example simulates an air-cooled cylindrical 18650 lithium-ion battery during a charge-discharge cycle, followed by a relaxing period. A one-dimensional cell model is used to model the battery cell chemistry, and a two-dimensional axi-symmetrical model is used to model the temperature in the battery.

### Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a common technique in which a small oscillating perturbation in cell potential is applied to an electrochemical system so as to interrogate the kinetic and transport properties. The Electroanalysis interface is used with a frequency domain study to simulate EIS for a range of electrode reaction rates. Nyquist and Bode plots illustrate the transition ...

### Current Density Distribution in a Solid Oxide Fuel Cell, AC Impedance Study

This model presents a study of the current density distribution in a solid oxide fuel cell (SOFC). The model includes the full coupling between the mass balances at the anode and cathode, the momentum balances in the gas channels, the gas flow in the porous electrodes, the balance of the ionic current carried by the oxide ion, and a balance of electronic current. A truly large number of ...

### Mass Transport Analysis of a High Temperature PEM Fuel Cell

This model example investigates the transport of reactants and water in a high temperature PEMFC. The model includes mass and momentum transport phenomena in the flow channels, gas diffusion layers (GDLs), and porous electrodes, as well as electrochemical currents in the GDLs, the porous electrodes, and the polymer membrane.

#### Quick Search

1 - 10 of 29 First | < Previous | Next > | Last