# COMSOL Blog

## Modeling a Coil Heat Exchanger

##### Walter Frei | August 21, 2014

Coil heat exchangers are simple and easy to manufacture. Here, we consider an axially wound coil of copper carrying hot water that heats air inside of a circular duct. Since the geometry is almost invariant about the centerline, the model is solved in the 2D axisymmetric plane. Additional expressions are added to compute the temperature drop between turns of the coil, which greatly simplifies the modeling.

### Getting the Most out of Client-Server Mode

##### Walter Frei | June 27, 2014

When using COMSOL Multiphysics on a Floating Network License, it is possible to use the Client-Server mode of operation to access remote computing resources for solving large models, while still using the graphics card on a local machine to display graphics. This can have some significant advantages, so let’s look at Client-Server mode in more detail.

### Understanding Stabilization Methods

##### Fabrice Schlegel | May 30, 2014

Most numerical simulation methods (finite elements, finite volumes, and finite differences) require stabilization methods when modeling transport applications driven mainly by convection rather than diffusion. With the Finite Element Method (FEM), stabilization means adding a small amount of artificial diffusion. This leads to more robust and faster computational performance. Here, we provide insight on the impact of stabilization on your numerical model. We also look at an alternative numerical method that is very efficient and does not require any stabilization.

### Tips for Using the Wall Distance Interface

##### Clemens Ruhl | April 21, 2014

The Wall Distance interface is used to calculate the distance to a wall in the turbulent flow interfaces available in COMSOL Multiphysics. It can be combined with any other interface and comes in handy when we need to calculate the distance to the nearest wall or detect, as part of a dynamic model, when a moving object will hit a wall. Today, we will study how the Wall Distance interface works and how other interfaces can benefit from its capabilities.

### Building a Beowulf Cluster for Faster Multiphysics Simulations

##### Pär Persson Mattsson | April 11, 2014

Many of us need up-to-date software and hardware in order to work efficiently. Therefore, we need to follow the pace of technological development. But, what should we do with the outdated hardware? It feels wasteful to send the old hardware to its grave or to just put it in a corner. Another, more productive, solution is to use the old hardware to build a Beowulf cluster and use it to speed up computations.

### How Do I Get the Most out of My Floating Network License (FNL)?

##### Vicente Javier Jiménez Miras | April 2, 2014

From an installation point of view, the main difference between a COMSOL CPU-Locked Single User (CPU) and Floating Network License (FNL) is how they are installed and managed. However, the FNL not only offers every single benefit of a CPU license, but also enables several additional features while greatly enhancing your workflow, allowing COMSOL Multiphysics to scale with your company’s growth.

### Automate Your Modeling Tasks with the COMSOL API for use with Java®

##### Thorsten Koch | March 27, 2014

To keep up with today’s fast-paced development cycles, R&D engineers and scientists need efficient tools to provide answers quickly and free them from routine tasks. COMSOL Multiphysics® has built-in features like parametric sweeps to increase simulation productivity. In addition to graphical modeling, COMSOL offers an Application Programming Interface (API) that you can use to automate any repetitive modeling step. Here’s how to get started with the COMSOL API for use with Java®.

### Plotting Spatial Derivatives of the Magnetic Field

##### Marc Fernandez Silva | March 5, 2014

Being able to compute the spatial gradients of the magnetic field or magnetic flux density is needed in areas such as radiology, magnetophoresis, and geophysics. One of the most important applications is in the design of magnetic resonance imaging machines, where it’s important to analyze not only the field strength, but also the spatial variation of the field. Today’s blog will demonstrate how to compute and plot the gradients of the magnetic field in 3D electromagnetic simulations in COMSOL Multiphysics.

### Modeling with the Thermoacoustic Interface in COMSOL

##### Mads Herring Jensen | February 28, 2014

Previously, we introduced the theory behind thermoacoustics. Here, I will go deeper into modeling acoustics with the Thermoacoustic interface in COMSOL Multiphysics and show you some tips and tricks on how to do this.

### Analyze your Simulation Results with Projection Operators

##### Clemens Ruhl | February 12, 2014

Have you ever used your hands to make shadow puppets on the wall? By shining a light behind your (three-dimensional) hands, you create two-dimensional projections on the wall. When analyzing your simulation data in COMSOL Multiphysics, you can do something similar with your model using projection operators.