Electrical

Matt Pooley | January 26, 2015

Simulation of 3D semiconductors has the potential to be extremely useful when developing and improving semiconductor technology by reducing the amount of experimentation and fabrication required to design complex devices. Modeling 3D devices is challenging as the length scales that must be resolved, combined with the nonlinear nature of semiconductor physics phenomena, often require computationally expensive simulations. Here, we share an example simulation of a 3D bipolar transistor and important advice for effective modeling of 3D semiconductors with COMSOL Multiphysics.

Read more ⇢

Article Categories

Bjorn Sjodin | January 23, 2015

How can you use an electric field to control the movement of electrically neutral particles? This may sound impossible, but in this blog entry, we will see that the phenomenon of dielectrophoresis (DEP) can do the trick. We will learn how DEP can be applied to particle separation and demonstrate a very easy-to-use biomedical simulation app that is created with the Application Builder and run with COMSOL Server™.

Read more ⇢
Nikola Strah | January 21, 2015

If you look up at the night sky, especially somewhere far away from city lights, you will see the stars twinkle. While an inspiration for poets and romantics throughout time, the beauty of the starry night sky has also been a challenge to astronomers studying the night sky and the universe. It has led to the development of adaptive optics, which is used nowadays to improve the power of optical systems beyond the obstacles imposed by the optical medium.

Read more ⇢

Article Categories

Mark Fowler | January 12, 2015

What happens when you place a vibrating conductive object in a static magnetic field? The magnetic field will induce a current in the moving solid and the charges moving through a magnetic field will experience a force. The resultant force acts to oppose the motion of the structure, which will lead to damping.

Read more ⇢

Article Categories

Bjorn Sjodin | January 5, 2015

In 1977, the axion, a type of elementary particle, was suggested as a solution to a theoretical particle physics problem: the strong charge-parity (CP) problem. Later, it was discovered that the particle may actually be a component of dark matter. Many experiments are currently underway that have the goal of detecting axions. In this blog post, we’ll focus on the Axion Dark Matter eXperiment (ADMX), which uses a microwave cavity in an attempt to accomplish this goal.

Read more ⇢

Article Categories

Walter Frei | January 1, 2015

Consumer electronics such as phones, e-book readers, computers, and even wristwatches are all making use of touchscreen technology. Many of these touchscreens use some form of capacitive sensing. Let’s take a look at how to analyze such a capacitive sensor in COMSOL Multiphysics using the AC/DC Module.

Read more ⇢

Article Categories

Supratik Datta | December 30, 2014

We have introduced a new interface for simulating piezoelectric devices in version 5.0 of the COMSOL Multiphysics simulation software. This interface aims to achieve several things. In this blog post, I will explain what these things are and how you can use them.

Read more ⇢
Christopher Boucher | December 25, 2014

Optical devices such as monochromators and spectrometers can be used to separate polychromatic, or multi-colored, light into separate colors. These devices have many applications in diverse areas that range from chemistry to astronomy. Using built-in tools in the Ray Optics Module, it is possible to model the separation of electromagnetic rays at different frequencies with a monochromator or spectrometer as well as analyze the resolution of such devices.

Read more ⇢

Article Categories

Bridget Cunningham | December 23, 2014

Surface micromachining is a process used to manufacture MEMS devices, which includes accelerometers. In this blog post, we model the electric field and forces within an accelerometer as well as highlight a new geometry feature available in COMSOL Multiphysics version 5.0.

Read more ⇢

Article Categories

Linus Andersson | December 18, 2014

No matter how much you refine the mesh at that corner in your geometry, the electromagnetic field that you are computing never seems to settle on a converged value. Is that a problem? If so, what can you do about it? Read on to find out.

Read more ⇢

Article Categories

Bridget Cunningham | December 12, 2014

Among its neighboring buildings on the Las Vegas strip, the Vdara® hotel can be identified by its unique crescent-shaped design. While visually appealing, this architectural element became an area of concern as it contributed to the development of a caustic surface on the hotel’s pool deck. As a result, guests at particular locations experienced severe sunburns at certain days and times of the year. Here, we model the generation of a caustic surface in the case of the Vdara® hotel.

Read more ⇢

Article Categories

1 2 3 13